Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
FASEB J ; 36(1): e22090, 2022 01.
Article in English | MEDLINE | ID: mdl-34907595

ABSTRACT

Despite many advances in infection control practices, including prophylactic antibiotics, surgical site infections (SSIs) remain a significant cause of morbidity, prolonged hospitalization, and death worldwide. Our innate immune system possesses a multitude of powerful antimicrobial strategies which make it highly effective in combating bacterial, fungal, and viral infections. However, pathogens use various stealth mechanisms to avoid the innate immune system, which in turn buy them time to colonize wounds and damage tissues at surgical sites. We hypothesized that immunomodulators that can jumpstart and activate innate immune responses at surgical sites, would likely reduce infection at surgical sites. We used three immunomodulators; fMLP (formyl-Methionine-Lysine-Proline), CCL3 (MIP-1α), and LPS (Lipopolysaccharide), based on their documented ability to elicit strong inflammatory responses; in a surgical wound infection model with Pseudomonas aeruginosa to evaluate our hypothesis. Our data indicate that one-time topical treatment with these immunomodulators at low doses significantly increased proinflammatory responses in infected and uninfected surgical wounds and were as effective, (or even better), than a potent prophylactic antibiotic (Tobramycin) in reducing P. aeruginosa infection in wounds. Our data further show that immunomodulators did not have adverse effects on tissue repair and wound healing processes. Rather, they enhanced healing in both infected and uninfected wounds. Collectively, our data demonstrate that harnessing the power of the innate immune system by immunomodulators can significantly boost infection control and potentially stimulate healing. We propose that topical treatment with these immunomodulators at the time of surgery may have therapeutic potential in combating SSI, alone or in combination with prophylactic antibiotics.


Subject(s)
Immunologic Factors/pharmacology , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/immunology , Surgical Wound Infection/drug therapy , Animals , Drug Evaluation , Mice , Mice, Knockout , Pseudomonas Infections/immunology , Surgical Wound Infection/immunology , Surgical Wound Infection/microbiology
2.
Mol Cancer Ther ; 14(6): 1295-305, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25855786

ABSTRACT

mTOR is a serine/threonine kinase that regulates cell growth, metabolism, proliferation, and survival. mTOR complex-1 (mTORC1) and mTOR complex-2 (mTORC2) are critical mediators of the PI3K-AKT pathway, which is frequently mutated in many cancers, leading to hyperactivation of mTOR signaling. Although rapamycin analogues, allosteric inhibitors that target only the mTORC1 complex, have shown some clinical activity, it is hypothesized that mTOR kinase inhibitors, blocking both mTORC1 and mTORC2 signaling, will have expanded therapeutic potential. Here, we describe the preclinical characterization of CC-223. CC-223 is a potent, selective, and orally bioavailable inhibitor of mTOR kinase, demonstrating inhibition of mTORC1 (pS6RP and p4EBP1) and mTORC2 [pAKT(S473)] in cellular systems. Growth inhibitory activity was demonstrated in hematologic and solid tumor cell lines. mTOR kinase inhibition in cells, by CC-223, resulted in more complete inhibition of the mTOR pathway biomarkers and improved antiproliferative activity as compared with rapamycin. Growth inhibitory activity and apoptosis was demonstrated in a panel of hematologic cancer cell lines. Correlative analysis revealed that IRF4 expression level associates with resistance, whereas mTOR pathway activation seems to associate with sensitivity. Treatment with CC-223 afforded in vivo tumor biomarker inhibition in tumor-bearing mice, after a single oral dose. CC-223 exhibited dose-dependent tumor growth inhibition in multiple solid tumor xenografts. Significant inhibition of mTOR pathway markers pS6RP and pAKT in CC-223-treated tumors suggests that the observed antitumor activity of CC-223 was mediated through inhibition of both mTORC1 and mTORC2. CC-223 is currently in phase I clinical trials.


Subject(s)
Neoplasms/drug therapy , Pyrazines/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , Xenograft Model Antitumor Assays , Animals , Apoptosis/drug effects , Blotting, Western , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Female , HCT116 Cells , HEK293 Cells , Humans , Mechanistic Target of Rapamycin Complex 1 , Mechanistic Target of Rapamycin Complex 2 , Mice, SCID , Molecular Structure , Multiprotein Complexes/antagonists & inhibitors , Multiprotein Complexes/metabolism , Neoplasms/blood supply , Neoplasms/metabolism , Neovascularization, Pathologic/prevention & control , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Pyrazines/chemistry , TOR Serine-Threonine Kinases/metabolism , Tumor Burden/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...