Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Med Chem ; 67(13): 11401-11420, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38918002

ABSTRACT

Structure-activity relationship studies of 2,8-disubstituted-1,5-naphthyridines, previously reported as potent inhibitors of Plasmodium falciparum (Pf) phosphatidylinositol-4-kinase ß (PI4K), identified 1,5-naphthyridines with basic groups at 8-position, which retained Plasmodium PI4K inhibitory activity but switched primary mode of action to the host hemoglobin degradation pathway through inhibition of hemozoin formation. These compounds showed minimal off-target inhibitory activity against the human phosphoinositide kinases and MINK1 and MAP4K kinases, which were associated with the teratogenicity and testicular toxicity observed in rats for the PfPI4K inhibitor clinical candidate MMV390048. A representative compound from the series retained activity against field isolates and lab-raised drug-resistant strains of Pf. It was efficacious in the humanized NSG mouse malaria infection model at a single oral dose of 32 mg/kg. This compound was nonteratogenic in the zebrafish embryo model of teratogenicity and has a low predicted human dose, indicating that this series has the potential to deliver a preclinical candidate for malaria.


Subject(s)
1-Phosphatidylinositol 4-Kinase , Antimalarials , Hemeproteins , Naphthyridines , Plasmodium falciparum , Zebrafish , Plasmodium falciparum/drug effects , Animals , Naphthyridines/pharmacology , Naphthyridines/chemistry , Naphthyridines/chemical synthesis , Naphthyridines/therapeutic use , Antimalarials/pharmacology , Antimalarials/chemistry , Antimalarials/chemical synthesis , 1-Phosphatidylinositol 4-Kinase/antagonists & inhibitors , 1-Phosphatidylinositol 4-Kinase/metabolism , Humans , Structure-Activity Relationship , Hemeproteins/antagonists & inhibitors , Hemeproteins/metabolism , Mice , Rats , Malaria, Falciparum/drug therapy , Male , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis
2.
RSC Med Chem ; 14(4): 644-657, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37122538

ABSTRACT

Over the past 2000 years, tuberculosis (TB) has killed more people than any other infectious disease. In 2021, TB claimed 1.6 million lives worldwide, making it the second leading cause of death from an infectious disease after COVID-19. Unfortunately, TB drug discovery research was neglected in the last few decades of the twentieth century. Recently, the World Health Organization has taken the initiative to develop new TB drugs. Imidazopyridine, an important fused bicyclic 5,6 heterocycle has been recognized as a "drug prejudice" scaffold for its wide range of applications in medicinal chemistry. A few examples of imidazo[1,2-a]pyridine exhibit significant activity against multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB). Here, we critically review anti-TB compounds of the imidazo[1,2-a]pyridine class by discussing their development based on the structure-activity relationship, mode-of-action, and various scaffold hopping strategies over the last decade, which is identified as a renaissance era of TB drug discovery research.

3.
ACS Infect Dis ; 8(11): 2315-2326, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36325756

ABSTRACT

Alternative mode-of-inhibition of clinically validated targets is an effective strategy for circumventing existing clinical drug resistance. Herein, we report 1,3-diarylpyrazolyl-acylsulfonamides as potent inhibitors of HadAB/BC, a 3-hydroxyl-ACP dehydratase complex required to iteratively elongate the meromycolate chain of mycolic acids in Mycobacterium tuberculosis (Mtb). Mutations in compound 1-resistant Mtb mutants mapped to HadC (Rv0637; K157R), while chemoproteomics confirmed the compound's binding to HadA (Rv0635), HadB (Rv0636), and HadC. The compounds effectively inhibited the HadAB and HadBC enzyme activities and affected mycolic acid biosynthesis in Mtb, in a concentration-dependent manner. Unlike known 3-hydroxyl-ACP dehydratase complex inhibitors of clinical significance, isoxyl and thioacetazone, 1,3-diarylpyrazolyl-acylsulfonamides did not require activation by EthA and thus are not liable to EthA-mediated resistance. Further, the crystal structure of a key compound in a complex with Mtb HadAB revealed unique binding interactions within the active site of HadAB, providing a useful tool for further structure-based optimization of the series.


Subject(s)
Mycobacterium tuberculosis , Thioacetazone , Bacterial Proteins/metabolism , Mycolic Acids/chemistry , Thioacetazone/metabolism , Thioacetazone/pharmacology , Hydro-Lyases/chemistry , Hydro-Lyases/metabolism , Hydro-Lyases/pharmacology
4.
J Med Chem ; 65(9): 6903-6925, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35500229

ABSTRACT

New antibiotics with either a novel mode of action or novel mode of inhibition are urgently needed to overcome the threat of drug-resistant tuberculosis (TB). The present study profiles new spiropyrimidinetriones (SPTs), DNA gyrase inhibitors having activity against drug-resistant Mycobacterium tuberculosis (Mtb), the causative agent of TB. While the clinical candidate zoliflodacin has progressed to phase 3 trials for the treatment of gonorrhea, compounds herein demonstrated higher inhibitory potency against Mtb DNA gyrase (e.g., compound 42 with IC50 = 2.0) and lower Mtb minimum inhibitor concentrations (0.49 µM for 42). Notably, 42 and analogues showed selective Mtb activity relative to representative Gram-positive and Gram-negative bacteria. DNA gyrase inhibition was shown to involve stabilization of double-cleaved DNA, while on-target activity was supported by hypersensitivity against a gyrA hypomorph. Finally, a docking model for SPTs with Mtb DNA gyrase was developed, and a structural hypothesis was built for structure-activity relationship expansion.


Subject(s)
Mycobacterium tuberculosis , Topoisomerase II Inhibitors , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , DNA Gyrase/genetics , Gram-Negative Bacteria , Gram-Positive Bacteria , Microbial Sensitivity Tests , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/pharmacology , Topoisomerase II Inhibitors/therapeutic use
5.
Antimicrob Agents Chemother ; 66(4): e0219221, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35266826

ABSTRACT

Described here is a series of spiropyrimidinetrione (SPT) compounds with activity against Mycobacterium tuberculosis through inhibition of DNA gyrase. The SPT class operates via a novel mode of inhibition, which involves Mg2+-independent stabilization of the DNA cleavage complex with DNA gyrase and is thereby not cross-resistant with other DNA gyrase-inhibiting antibacterials, including fluoroquinolones. Compound 22 from the series was profiled broadly and showed in vitro cidality as well as intracellular activity against M. tuberculosis in macrophages. Evidence for the DNA gyrase mode of action was supported by inhibition of the target in a DNA supercoiling assay and elicitation of an SOS response seen in a recA reporter strain of M. tuberculosis. Pharmacokinetic properties of 22 supported evaluation of efficacy in an acute model of M. tuberculosis infection, where modest reduction in CFU numbers was seen. This work offers promise for deriving a novel drug class of tuberculosis agent without preexisting clinical resistance.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , DNA Gyrase/genetics , Fluoroquinolones/pharmacology , Fluoroquinolones/therapeutic use , Humans , Topoisomerase II Inhibitors/pharmacology , Tuberculosis/drug therapy
6.
J Med Chem ; 64(17): 12790-12807, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34414766

ABSTRACT

Phenotypic whole cell high-throughput screening of a ∼150,000 diverse set of compounds against Mycobacterium tuberculosis (Mtb) in cholesterol-containing media identified 1,3-diarylpyrazolyl-acylsulfonamide 1 as a moderately active hit. Structure-activity relationship (SAR) studies demonstrated a clear scope to improve whole cell potency to MIC values of <0.5 µM, and a plausible pharmacophore model was developed to describe the chemical space of active compounds. Compounds are bactericidal in vitro against replicating Mtb and retained activity against multidrug-resistant clinical isolates. Initial biology triage assays indicated cell wall biosynthesis as a plausible mode-of-action for the series. However, no cross-resistance with known cell wall targets such as MmpL3, DprE1, InhA, and EthA was detected, suggesting a potentially novel mode-of-action or inhibition. The in vitro and in vivo drug metabolism and pharmacokinetics profiles of several active compounds from the series were established leading to the identification of a compound for in vivo efficacy proof-of-concept studies.


Subject(s)
Antitubercular Agents/pharmacology , Cell Wall/metabolism , Mycobacterium tuberculosis/drug effects , Sulfonamides/pharmacology , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Drug Discovery , Hep G2 Cells , Humans , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Mycobacterium tuberculosis/metabolism , Structure-Activity Relationship , Sulfonamides/chemistry
7.
J Med Chem ; 64(1): 719-740, 2021 01 14.
Article in English | MEDLINE | ID: mdl-33395287

ABSTRACT

Phenotypic screening of a Medicines for Malaria Venture compound library against Mycobacterium tuberculosis (Mtb) identified a cluster of pan-active 2-pyrazolylpyrimidinones. The biology triage of these actives using various tool strains of Mtb suggested a novel mechanism of action. The compounds were bactericidal against replicating Mtb and retained potency against clinical isolates of Mtb. Although selected MmpL3 mutant strains of Mtb showed resistance to these compounds, there was no shift in the minimum inhibitory concentration (MIC) against a mmpL3 hypomorph, suggesting mutations in MmpL3 as a possible resistance mechanism for the compounds but not necessarily as the target. RNA transcriptional profiling and the checkerboard board 2D-MIC assay in the presence of varying concentrations of ferrous salt indicated perturbation of the Fe-homeostasis by the compounds. Structure-activity relationship studies identified potent compounds with good physicochemical properties and in vitro microsomal metabolic stability with moderate selectivity over cytotoxicity against mammalian cell lines.


Subject(s)
Antitubercular Agents/chemistry , Pyrimidinones/chemistry , Animals , Antitubercular Agents/metabolism , Antitubercular Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Half-Life , Humans , Iron/metabolism , Male , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mice , Mice, Inbred C57BL , Microbial Sensitivity Tests , Microsomes/metabolism , Mutation , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/isolation & purification , Pyrazoles/chemistry , Pyrimidinones/metabolism , Pyrimidinones/pharmacology , Rats , Structure-Activity Relationship
8.
J Med Chem ; 60(24): 10118-10134, 2017 12 28.
Article in English | MEDLINE | ID: mdl-29148755

ABSTRACT

A BioFocus DPI SoftFocus library of ∼35 000 compounds was screened against Mycobacterium tuberculosis (Mtb) in order to identify novel hits with antitubercular activity. The hits were evaluated in biology triage assays to exclude compounds suggested to function via frequently encountered promiscuous mechanisms of action including inhibition of the QcrB subunit of the cytochrome bc1 complex, disruption of cell-wall homeostasis, and DNA damage. Among the hits that passed this screening cascade, a 6-dialkylaminopyrimidine carboxamide series was prioritized for hit to lead optimization. Compounds from this series were active against clinical Mtb strains, while no cross-resistance to conventional antituberculosis drugs was observed. This suggested a novel mechanism of action, which was confirmed by chemoproteomic analysis leading to the identification of BCG_3193 and BCG_3827 as putative targets of the series with unknown function. Initial structure-activity relationship studies have resulted in compounds with moderate to potent antitubercular activity and improved physicochemical properties.


Subject(s)
Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Mycobacterium tuberculosis/drug effects , Structure-Activity Relationship , Administration, Oral , Animals , Antitubercular Agents/chemical synthesis , Blood Proteins/metabolism , Drug Stability , High-Throughput Screening Assays , Humans , Male , Mice, Inbred C57BL , Microsomes, Liver/drug effects , Mycobacterium tuberculosis/isolation & purification , Proteomics/methods , Pyrimidines/chemistry , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
9.
Bioorg Med Chem Lett ; 25(16): 3234-45, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26087937

ABSTRACT

Whole cell based screens to identify hits against Mycobacterium tuberculosis (Mtb), carried out under replicating and non-replicating (NRP) conditions, resulted in the identification of multiple, novel but structurally related spiropiperidines with potent antitubercular properties. These compounds could be further classified into three classes namely 3-(3-aryl-1,2,4-oxadiazol-5-yl)-1'-alkylspiro[indene-1,4'-piperidine] (abbr. spiroindenes), 4-(3-aryl-1,2,4-oxadiazol-5-yl)-1'-alkylspiro[chromene-2,4'-piperidine] (abbr. spirochromenes) and 1'-benzylspiro[indole-1,4'-piperidin]-2(1H)-one (abbr. spiroindolones). Spiroindenes showed ⩾ 4 log10 kill (at 2-12 µM) on replicating Mtb, but were moderately active under non replicating conditions. Whole genome sequencing efforts of spiroindene resistant mutants resulted in the identification of I292L mutation in MmpL3 (Mycobacterial membrane protein Large), required for the assembly of mycolic acid into the cell wall core of Mtb. MIC modulation studies demonstrated that the mutants were cross-resistant to spirochromenes but not to spiroindolones. This Letter describes lead identification efforts to improve potency while reducing the lipophilicity and hERG liabilities of spiroindenes. Additionally, as deduced from the SAR studies, we provide insights regarding the new chemical opportunities that the spiroindolones can offer to the TB drug discovery initiatives.


Subject(s)
Antitubercular Agents/pharmacology , Piperidines/pharmacology , Spiro Compounds/pharmacology , Animals , Antitubercular Agents/chemical synthesis , Antitubercular Agents/pharmacokinetics , Bacteria/drug effects , Drug Resistance, Bacterial/genetics , Genome, Bacterial , High-Throughput Screening Assays , Hypoxia , Lipids/chemistry , Matrix Metalloproteinase 13/biosynthesis , Matrix Metalloproteinase 13/genetics , Mice , Microbial Sensitivity Tests , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Piperidines/chemical synthesis , Piperidines/pharmacokinetics , Spiro Compounds/chemical synthesis , Spiro Compounds/pharmacokinetics , Structure-Activity Relationship
10.
ACS Med Chem Lett ; 5(9): 1005-9, 2014 Sep 11.
Article in English | MEDLINE | ID: mdl-25221657

ABSTRACT

A cellular activity-based screen on Mycobacterium tuberculosis (Mtb) H37Rv using a focused library from the AstraZeneca corporate collection led to the identification of 2-phenylindoles and arylsulphonamides, novel antimycobacterial scaffolds. Both the series were bactericidal in vitro and in an intracellular macrophage infection model, active against drug sensitive and drug resistant Mtb clinical isolates, and specific to mycobacteria. The scaffolds showed promising structure-activity relationships; compounds with submicromolar cellular potency were identified during the hit to lead exploration. Furthermore, compounds from both scaffolds were tested for inhibition of known target enzymes or pathways of antimycobacterial drugs including InhA, RNA polymerase, DprE1, topoisomerases, protein synthesis, and oxidative-phosphorylation. Compounds did not inhibit any of the targets suggesting the potential of a possible novel mode of action(s). Hence, both scaffolds provide the opportunity to be developed further as leads and tool compounds to uncover novel mechanisms for tuberculosis drug discovery.

11.
J Med Chem ; 57(12): 5419-34, 2014 Jun 26.
Article in English | MEDLINE | ID: mdl-24871036

ABSTRACT

4-Aminoquinolone piperidine amides (AQs) were identified as a novel scaffold starting from a whole cell screen, with potent cidality on Mycobacterium tuberculosis (Mtb). Evaluation of the minimum inhibitory concentrations, followed by whole genome sequencing of mutants raised against AQs, identified decaprenylphosphoryl-ß-d-ribose 2'-epimerase (DprE1) as the primary target responsible for the antitubercular activity. Mass spectrometry and enzyme kinetic studies indicated that AQs are noncovalent, reversible inhibitors of DprE1 with slow on rates and long residence times of ∼100 min on the enzyme. In general, AQs have excellent leadlike properties and good in vitro secondary pharmacology profile. Although the scaffold started off as a single active compound with moderate potency from the whole cell screen, structure-activity relationship optimization of the scaffold led to compounds with potent DprE1 inhibition (IC50 < 10 nM) along with potent cellular activity (MIC = 60 nM) against Mtb.


Subject(s)
Amides/chemistry , Antitubercular Agents/chemistry , Bacterial Proteins/antagonists & inhibitors , Mycobacterium tuberculosis/drug effects , Oxidoreductases/antagonists & inhibitors , Piperidines/chemistry , Quinolones/chemistry , Alcohol Oxidoreductases , Amides/pharmacokinetics , Amides/pharmacology , Animals , Antitubercular Agents/pharmacokinetics , Antitubercular Agents/pharmacology , Catalytic Domain , Cell Line, Tumor , Drug Resistance, Bacterial , Genome, Bacterial , Humans , Kinetics , Microbial Sensitivity Tests , Molecular Docking Simulation , Mutation , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/genetics , Piperidines/pharmacokinetics , Piperidines/pharmacology , Protein Binding , Quinolones/pharmacokinetics , Quinolones/pharmacology , Rats, Wistar , Stereoisomerism , Structure-Activity Relationship
12.
Bioorg Med Chem Lett ; 24(3): 870-9, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24405701

ABSTRACT

Scaffold hopping from the thiazolopyridine ureas led to thiazolopyridone ureas with potent antitubercular activity acting through inhibition of DNA GyrB ATPase activity. Structural diversity was introduced, by extension of substituents from the thiazolopyridone N-4 position, to access hydrophobic interactions in the ribose pocket of the ATP binding region of GyrB. Further optimization of hydrogen bond interactions with arginines in site-2 of GyrB active site pocket led to potent inhibition of the enzyme (IC50 2 nM) along with potent cellular activity (MIC=0.1 µM) against Mycobacterium tuberculosis (Mtb). Efficacy was demonstrated in an acute mouse model of tuberculosis on oral administration.


Subject(s)
Mycobacterium tuberculosis/drug effects , Pyridones/chemical synthesis , Thiazoles/chemical synthesis , Topoisomerase II Inhibitors/chemical synthesis , Topoisomerase II Inhibitors/pharmacology , Urea/chemical synthesis , Urea/pharmacology , Administration, Oral , Animals , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Disease Models, Animal , Inhibitory Concentration 50 , Mice , Microbial Sensitivity Tests , Molecular Structure , Pyridones/chemistry , Pyridones/pharmacology , Thiazoles/chemistry , Thiazoles/pharmacology , Topoisomerase II Inhibitors/chemistry , Urea/chemistry
13.
J Med Chem ; 56(21): 8834-48, 2013 Nov 14.
Article in English | MEDLINE | ID: mdl-24088190

ABSTRACT

A pharmacophore-based search led to the identification of thiazolopyridine ureas as a novel scaffold with antitubercular activity acting through inhibition of DNA Gyrase B (GyrB) ATPase. Evaluation of the binding mode of thiazolopyridines in a Mycobacterium tuberculosis (Mtb) GyrB homology model prompted exploration of the side chains at the thiazolopyridine ring C-5 position to access the ribose/solvent pocket. Potent compounds with GyrB IC50 ≤ 1 nM and Mtb MIC ≤ 0.1 µM were obtained with certain combinations of side chains at the C-5 position and heterocycles at the C-6 position of the thiazolopyridine core. Substitutions at C-5 also enabled optimization of the physicochemical properties. Representative compounds were cocrystallized with Streptococcus pneumoniae (Spn) ParE; these confirmed the binding modes predicted by the homology model. The target link to GyrB was confirmed by genetic mapping of the mutations conferring resistance to thiazolopyridine ureas. The compounds are bactericidal in vitro and efficacious in vivo in an acute murine model of tuberculosis.


Subject(s)
Antitubercular Agents/pharmacology , DNA Gyrase/metabolism , Mycobacterium tuberculosis/drug effects , Pyridines/pharmacology , Topoisomerase II Inhibitors/pharmacology , Tuberculosis/drug therapy , Urea/pharmacology , Animals , Antitubercular Agents/administration & dosage , Antitubercular Agents/chemistry , Disease Models, Animal , Dose-Response Relationship, Drug , Mice , Mice, Inbred BALB C , Models, Molecular , Molecular Structure , Mycobacterium tuberculosis/enzymology , Pyridines/administration & dosage , Pyridines/chemistry , Structure-Activity Relationship , Topoisomerase II Inhibitors/administration & dosage , Topoisomerase II Inhibitors/chemistry , Urea/analogs & derivatives , Urea/chemistry
14.
Chem Biol Drug Des ; 72(4): 237-48, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18844670

ABSTRACT

Binding to the extracellular matrix, one of the most abundant human protein complexes, significantly affects drug disposition. Specifically, the interactions with extracellular matrix determine the free concentrations of small molecules acting in tissues, including signaling peptides, inhibitors of tissue remodeling enzymes such as matrix metalloproteinases, and other drug candidates. The nature of extracellular matrix binding was elucidated for 63 matrix metalloproteinase inhibitors, for which the association constants to an extracellular matrix mimic were reported here. The data did not correlate with lipophilicity as a common determinant of structure-nonspecific, orientation-averaged binding. A hypothetical structure of the binding site of the solidified extracellular matrix surrogate was analyzed using the Comparative Molecular Field Analysis, which needed to be applied in our multi-mode variant. This fact indicates that the compounds bind to extracellular matrix in multiple modes, which cannot be considered as completely orientation-averaged and exhibit structural dependence. The novel comparative molecular field analysis models, exhibiting satisfactory descriptive and predictive abilities, are suitable for prediction of the extracellular matrix binding for the untested chemicals, which are within applicability domains. The results contribute to a better prediction of the pharmacokinetic parameters such as the distribution volume and the tissue-blood partition coefficients, in addition to a more imminent benefit for the development of more effective matrix metalloproteinase inhibitors.


Subject(s)
Enzyme Inhibitors/metabolism , Extracellular Matrix/metabolism , Matrix Metalloproteinases/metabolism , Models, Molecular , Quantitative Structure-Activity Relationship , Binding Sites , Protein Binding , Protein Conformation
15.
J Am Chem Soc ; 125(39): 11796-7, 2003 10 01.
Article in English | MEDLINE | ID: mdl-14505383

ABSTRACT

Highly diastereoselective and enantioselective addition of N-benzylhydroxylamine to imides 17 and 20-30 produces alpha,beta-trans-disubstituted N-benzylisoxazolidinones 19 and 31-41. These reactions proceed in 60-96% ee with 93-99% de's using 5 mol % of Mg(NTf2)2 and ligand 18. The product isoxazolidinones can be hydrogenolyzed directly to provide alpha,beta-disubstituted-beta-amino acids.


Subject(s)
Amino Acids/chemical synthesis , Hydroxylamines/chemistry , Imides/chemistry , Isoxazoles/chemistry , Stereoisomerism
16.
Org Lett ; 4(20): 3343-6, 2002 Oct 03.
Article in English | MEDLINE | ID: mdl-12323014

ABSTRACT

Treatment of N-acyloxazolidinones with hydroxylamines using samarium triflate as a Lewis acid provides the corresponding hydroxamic acids in 50-98% yields at room temperature. The conversion proceeds with high degree of chemoselectivity and without racemization of chiral centers alpha- to the acyl group. [reaction: see text]


Subject(s)
Hydroxamic Acids/chemical synthesis , Oxazolidinones/chemistry , Hydroxamic Acids/chemistry , Isomerism , Mesylates/chemistry , Molecular Structure , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...