Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
medRxiv ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38343823

ABSTRACT

Background: In India, anemia is widely researched in children and women of reproductive age, however, studies in older populations are lacking. Given the adverse effect of anemia on cognitive function and dementia this older population group warrants further study. The Longitudinal Ageing Study in India - Harmonized Diagnostic Assessment of Dementia (LASI-DAD) dataset contains detailed measures to allow a better understanding of anaemia as a potential risk factor for dementia. Method: 2,758 respondents from the LASI-DAD cohort, aged 60 or older, had a complete blood count measured from venous blood as well as cognitive function tests including episodic memory, executive function and verbal fluency. Linear regression was used to test the associations between blood measures (including anemia and hemoglobin concentration (g/dL)) with 11 cognitive domains. All models were adjusted for age and gender with the full model containing adjustments for rural location, years of education, smoking, region, BMI and population weights.Results from LASI-DAD were validated using the USA-based Health and Retirement Study (HRS) cohort (n=5720) to replicate associations between blood cell measures and global cognition. Results: In LASI-DAD, we showed an association between anemia and poor memory (p=0.0054). We found a positive association between hemoglobin concentration and ten cognitive domains tested (ß=0.041-0.071, p<0.05). The strongest association with hemoglobin was identified for memory-based tests (immediate episodic, delayed episodic and broad domain memory, ß=0.061-0.071, p<0.005). Positive associations were also shown between the general cognitive score and the other red blood count tests including mean corpuscular hemoglobin concentration (MCHC, ß=0.06, p=0.0001) and red cell distribution width (RDW, ß =-0.11, p<0.0001). In the HRS cohort, positive associations were replicated between general cognitive score and other blood count tests (Red Blood Cell, MCHC and RDW, p<0.05). Conclusion: We have established in a large South Asian population that low hemoglobin and anaemia are associated with low cognitive function, therefore indicating that anaemia could be an important modifiable risk factor. We have validated this result in an external cohort demonstrating both the variability of this risk factor cross-nationally and its generalizable association with cognitive outcomes.

2.
Front Aging Neurosci ; 14: 1040001, 2022.
Article in English | MEDLINE | ID: mdl-36523958

ABSTRACT

Background and objective: Blood-based biomarkers represent a promising approach to help identify early Alzheimer's disease (AD). Previous research has applied traditional machine learning (ML) to analyze plasma omics data and search for potential biomarkers, but the most modern ML methods based on deep learning has however been scarcely explored. In the current study, we aim to harness the power of state-of-the-art deep learning neural networks (NNs) to identify plasma proteins that predict amyloid, tau, and neurodegeneration (AT[N]) pathologies in AD. Methods: We measured 3,635 proteins using SOMAscan in 881 participants from the European Medical Information Framework for AD Multimodal Biomarker Discovery study (EMIF-AD MBD). Participants underwent measurements of brain amyloid ß (Aß) burden, phosphorylated tau (p-tau) burden, and total tau (t-tau) burden to determine their AT(N) statuses. We ranked proteins by their association with Aß, p-tau, t-tau, and AT(N), and fed the top 100 proteins along with age and apolipoprotein E (APOE) status into NN classifiers as input features to predict these four outcomes relevant to AD. We compared NN performance of using proteins, age, and APOE genotype with performance of using age and APOE status alone to identify protein panels that optimally improved the prediction over these main risk factors. Proteins that improved the prediction for each outcome were aggregated and nominated for pathway enrichment and protein-protein interaction enrichment analysis. Results: Age and APOE alone predicted Aß, p-tau, t-tau, and AT(N) burden with area under the curve (AUC) scores of 0.748, 0.662, 0.710, and 0.795. The addition of proteins significantly improved AUCs to 0.782, 0.674, 0.734, and 0.831, respectively. The identified proteins were enriched in five clusters of AD-associated pathways including human immunodeficiency virus 1 infection, p53 signaling pathway, and phosphoinositide-3-kinase-protein kinase B/Akt signaling pathway. Conclusion: Combined with age and APOE genotype, the proteins identified have the potential to serve as blood-based biomarkers for AD and await validation in future studies. While the NNs did not achieve better scores than the support vector machine model used in our previous study, their performances were likely limited by small sample size.

3.
Article in English | MEDLINE | ID: mdl-36109050

ABSTRACT

INTRODUCTION: Type 2 diabetes is a risk factor for dementia and Parkinson's disease (PD). Drug treatments for diabetes, such as metformin, could be used as novel treatments for these neurological conditions. Using electronic health records from the USA (OPTUM EHR) we aimed to assess the association of metformin with all-cause dementia, dementia subtypes and PD compared with sulfonylureas. RESEARCH DESIGN AND METHODS: A new user comparator study design was conducted in patients ≥50 years old with diabetes who were new users of metformin or sulfonylureas between 2006 and 2018. Primary outcomes were all-cause dementia and PD. Secondary outcomes were Alzheimer's disease (AD), vascular dementia (VD) and mild cognitive impairment (MCI). Cox proportional hazards models with inverse probability of treatment weighting (IPTW) were used to estimate the HRs. Subanalyses included stratification by age, race, renal function, and glycemic control. RESULTS: We identified 96 140 and 16 451 new users of metformin and sulfonylureas, respectively. Mean age was 66.4±8.2 years (48% male, 83% Caucasian). Over the 5-year follow-up, 3207 patients developed all-cause dementia (2256 (2.3%) metformin, 951 (5.8%) sulfonylurea users) and 760 patients developed PD (625 (0.7%) metformin, 135 (0.8%) sulfonylurea users). After IPTW, HRs for all-cause dementia and PD were 0.80 (95% CI 0.73 to 0.88) and 1.00 (95% CI 0.79 to 1.28). HRs for AD, VD and MCI were 0.81 (0.70-0.94), 0.79 (0.63-1.00) and 0.91 (0.79-1.04). Stronger associations were observed in patients who were younger (<75 years old), Caucasian, and with moderate renal function. CONCLUSIONS: Metformin users compared with sulfonylurea users were associated with a lower risk of all-cause dementia, AD and VD but not with PD or MCI. Age and renal function modified risk reduction. Our findings support the hypothesis that metformin provides more neuroprotection for dementia than sulfonylureas but not for PD, but further work is required to assess causality.


Subject(s)
Dementia , Diabetes Mellitus, Type 2 , Metformin , Parkinson Disease , Aged , Dementia/epidemiology , Dementia/etiology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/epidemiology , Female , Humans , Hypoglycemic Agents/adverse effects , Male , Metformin/adverse effects , Middle Aged , Parkinson Disease/complications , Parkinson Disease/drug therapy , Parkinson Disease/epidemiology , Sulfonylurea Compounds/adverse effects
4.
Brain Behav ; 12(5): e2525, 2022 05.
Article in English | MEDLINE | ID: mdl-35362209

ABSTRACT

BACKGROUND: Hypertension is a well-established risk factor for cognitive impairment, brain atrophy, and dementia. However, the relationship of other types of hypertensions, such as isolated hypertension on brain health and its comparison to systolic-diastolic hypertension (where systolic and diastolic measures are high), is still relatively unknown. Due to its increased prevalence, it is important to investigate the impact of isolated hypertension to help understand its potential impact on cognitive decline and future dementia risk. In this study, we compared a variety of global brain measures between participants with isolated hypertension to those with normal blood pressure (BP) or systolic-diastolic hypertension using the largest cohort of healthy individuals. METHODS: Using the UK Biobank cohort, we carried out a cross-sectional study using 29,775 participants (mean age 63 years, 53% female) with BP measurements and brain magnetic resonance imaging (MRI) data. We used linear regression models adjusted for multiple confounders to compare a variety of global, subcortical, and white matter brain measures. We compared participants with either isolated systolic or diastolic hypertension with normotensives and then with participants with systolic-diastolic hypertension. RESULTS: The results showed that participants with isolated systolic or diastolic hypertension taking BP medications had smaller gray matter but larger white matter microstructures and macrostructures compared to normotensives. Isolated systolic hypertensives had larger total gray matter and smaller white matter traits when comparing these regions with participants with systolic-diastolic hypertension. CONCLUSIONS: These results provide support to investigate possible preventative strategies that target isolated hypertension as well as systolic-diastolic hypertension to maintain brain health and/or reduce dementia risk earlier in life particularly in white matter regions.


Subject(s)
Dementia , Hypertension , Biological Specimen Banks , Blood Pressure/physiology , Brain , Cross-Sectional Studies , Dementia/diagnostic imaging , Dementia/epidemiology , Female , Humans , Hypertension/diagnostic imaging , Hypertension/epidemiology , Hypertension/pathology , Magnetic Resonance Imaging , Male , Middle Aged , United Kingdom/epidemiology
5.
Behav Res Methods ; 52(6): 2588-2603, 2020 12.
Article in English | MEDLINE | ID: mdl-32500364

ABSTRACT

Eye tracking is a widely used tool for behavioral research in the field of psychology. With technological advancement, we now have specialized eye-tracking devices that offer high sampling rates, up to 2000 Hz, and allow for measuring eye movements with high accuracy. They also offer high spatial resolution, which enables the recording of very small movements, like drifts and microsaccades. Features and parameters of interest that characterize eye movements need to be algorithmically extracted from raw data as most eye trackers identify only basic parameters, such as blinks, fixations, and saccades. Eye-tracking experiments may investigate eye movement behavior in different groups of participants and in varying stimuli conditions. Hence, the analysis stage of such experiments typically involves two phases, (i) extraction of parameters of interest and (ii) statistical analysis between different participants or stimuli conditions using these parameters. Furthermore, the datasets collected in these experiments are usually very large in size, owing to the high temporal resolution of the eye trackers, and hence would benefit from an automated analysis toolkit. In this work, we present PyTrack, an end-to-end open-source solution for the analysis and visualization of eye-tracking data. It can be used to extract parameters of interest, generate and visualize a variety of gaze plots from raw eye-tracking data, and conduct statistical analysis between stimuli conditions and subject groups.


Subject(s)
Eye Movements , Eye-Tracking Technology , Humans , Saccades
6.
Methods Cell Biol ; 157: 99-122, 2020.
Article in English | MEDLINE | ID: mdl-32334722

ABSTRACT

Metastasis accounts for nearly 90% of all cancer associated mortalities. A hallmark of metastasis in malignancies of epithelial origin such as in the pancreas and breast, is invasion of the basement membrane (BM). While various in vitro assays have been developed to address questions regarding the invasiveness of tumors with relation to the BM, most fail to recapitulate a physiologically accurate cell-membrane interface. Here, we introduce a new 3D in vitro assay that uses the mouse mesenteric tissue as a mimic for the epithelial BM. We describe a simple, cost-effective protocol for extraction and setup of the assay, and show that the mesentery is a physiologically accurate model of the BM in its key components-type IV collagen, laminin-1 and perlecan. Furthermore, we introduce a user-friendly quantification tool, Q-Pi, which allows the 3D reconstruction, visualization and quantification of invasion at a cellular level. Overall, we demonstrate that this invasion assay provides a physiologically accurate tool to investigate BM invasion.


Subject(s)
Basement Membrane/cytology , Biological Assay/methods , Mesentery/cytology , Tissue Culture Techniques/methods , Animals , Basement Membrane/metabolism , Cell Movement , Epithelial Cells , Epithelium/metabolism , Extracellular Matrix Proteins/metabolism , Mice , Neoplasm Invasiveness/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...