Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 196(2): 165, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38233613

ABSTRACT

Air pollution is one of the most significant threats to human safety due to its detrimental health consequences worldwide. This study examines the air pollution levels in 22 districts of West Bengal from 2016 to 2021, using data from 81 stations operated by the West Bengal Pollution Control Board (WBPCB). The study assesses the short- and long-term impacts of particulate matter (PM) on human health. The highest annual variation of PM10 was noted in 2016 (106.99 ± 34.17 µg/m3), and the lowest was reported in 2020 (88.02 ± 13.61 µg/m3), whereas the highest annual variations of NO2 (µg/m3) were found in 2016 (35.17 ± 13.55 µg/m3), and lowest in 2019 (29.72 ± 13.08 µg/m3). Similarly, the SO2 level was lower (5.35 µg/m3) in 2017 and higher in 2020 (7.78 µg/m3). In the state, Bardhaman, Bankura, Kolkata, and Howrah recorded the highest PM10 concentrations. The monthly and seasonal variations of pollution showed higher in December, January, and February (winter season) and lowest observed in June, July, and August (rainy season). The southern part of West Bengal state has recorded higher pollution levels than the northern part. The short- and long-term health impact assessment due to particulate matter shows that the estimated number of attributable cases (ENACs) for incidence of chronic bronchitis in adults and prevalence of bronchitis in children were 305,234 and 14,652 respectively. The long-term impact of PM2.5 on human health ENACs for mortality due to chronic obstructive pulmonary disease for adults, acute lower respiratory infections in children aged 0-5, lung cancer, and stroke for adults were 21,303, 12,477, 25,064, 94,406, and 86,272 respectively. This outcome assists decision-makers and stakeholders in effectively addressing the air pollution and health risk concerns within the specified area.


Subject(s)
Air Pollutants , Air Pollution , Child , Adult , Humans , Air Pollutants/analysis , Environmental Monitoring , Air Pollution/analysis , Particulate Matter/analysis , India/epidemiology , Environmental Exposure
2.
Environ Geochem Health ; 43(11): 4515-4532, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33893897

ABSTRACT

Ninety groundwater samples were collected from Khayrasole and Rajnagar blocks of Birbhum district, West Bengal, India, during pre-monsoon and post-monsoon in 2016 to assess the hazards of fluoride in groundwater. Fluoride concentration fluctuated from 0.3 to 17.6 mg/L, with 70% of samples reported beyond the modified regional optimal fluoride level (0.7 mg/L) with a statistically significant level of p < 1.7E-24. The average cation and anion concentrations exhibited a descending order of Ca2+ > Mg2+ > Na+ > K+ and HCO3- > Cl- > SO42- > NO3- > F-, respectively. Notably, groundwater quality in 50% of the places ranged from poor to unfit for drinking purposes in terms of water quality index. The mean total hazard index (THI) was 1.1 for adults and 1.9 for children, signifying a greater chance of non-carcinogenic threats to both age groups. In calculating the THI, ingestion and dermal pathways accounted for approximately 96% and 3% health hazards, respectively. The Monte Carlo simulation and sensitivity analysis identified that the diurnal water ingestion rate, exposure duration, and fluoride concentration were the significant sensitive variables that triggered most groundwater-associated non-carcinogenic health issues, signifying more risks among children. Further, dental health surveys (N = 746), following Dean's norms for classification based on regional optimal fluoride level, designated the borderline grade of the community dental hazard. The subsequent hydrogeochemical characterization directed that dissolution from fluoride-bearing minerals and water-rock interaction, such as halite dissolution and calcite-dolomite precipitation, were the governing factors for F- enrichment in groundwater. This study will serve as baseline data for delineating fluoride-induced dental and other health hazards through sensitivity and spatial analysis in the GIS platform for hazard zonation and effective groundwater quality management.


Subject(s)
Groundwater , Water Pollutants, Chemical , Adult , Child , Environmental Monitoring , Fluorides/analysis , Humans , India , Risk Assessment , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...