Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Asian J ; 19(4): e202300933, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38241138

ABSTRACT

The emergence of non-precious metal-based robust and economic bifunctional oxygen electrocatalysts for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is crucial for the rational design of commercial rechargeable Zn-air batteries (RZAB) with safe energy conversion and storage systems. Herein, a facile strategy to fabricate a cost-efficient, bifunctional oxygen electrocatalyst Fe3 C/Fe decorated N doped carbon (FeC-700, the catalyst prepared at carbinization temperature of 700 °C) with a unique structure has been developed by carbonization of a single source precursor, tetrabutylammonium tetrachloroferrate(III) complex. The ORR and OER activity revealed excellent performance (ΔE=0.77 V) of the FeC-700 electrocatalyst, comparable to commercial Pt/C and RuO2, respectively. The designed temperature-tuneable structure provided sufficiently accessible active sites for the continuous passage of electrons by shortening the mass transfer pathway, leading to extremely durable electrocatalysts with high ECSA and amazing charge transfer performance. Remarkably, the assembled Zn-air batteries with the FeC-700 catalyst as the bifunctional air electrode delivers gratifying charging-discharging ability with an impressive power density of 134 mW cm-2 with a long lifespan, demonstrating prodigious possibilities for practical application.

2.
J Mater Chem B ; 11(37): 8956-8965, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37671527

ABSTRACT

Nanozymes, i.e., nanomaterials that possess intrinsic enzyme-like behaviour, have thrived over the past few decades owing to their advantages of superior stability and effortless storage. Such artificial enzymes can be a perfect alternative to naturally occurring enzymes, which have disadvantages of high cost and limited functionality. In this work, we present the fabrication of an Fe(III)-incorporated porphyrin-based conjugated organic polymer as a nanozyme for the efficient detection of glucose through its intrinsic peroxidase activity and the amperometric detection of hydrogen peroxide. The iron-incorporated porphyrin-based conjugated organic polymer (Fe-DMP-POR) possesses a spherical morphology with high chemical and thermal stability. Exploiting the peroxidase-mimicking activity of the material for the determination of glucose, a detection limit of 4.84 µM is achieved with a linear range of 0-0.15 mM. The Fe-DMP-POR also exhibits a reasonable recovery range for the detection of human blood glucose. The as-synthesized material can also act as an H2O2 sensor, with a sensitivity of 947.67 µA cm-2 mM-1 and a limit of detection of 3.16 µM.

3.
Inorg Chem ; 62(32): 12832-12842, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37527444

ABSTRACT

Methanol oxidation reaction (MOR) is a perfect alternative to the conventional oxygen evolution reaction (OER), generally utilized as the anode reaction for hydrogen generation via the electrochemical water splitting method. Moreover, MOR is also relevant to direct methanol fuel cells (DMFCs). These facts motivate the researchers to develop economical and efficient electrocatalysts for MOR. Herein, we have introduced an ethylene glycol-linked tetraphenyl porphyrin-based (EG-POR) covalent organic polymer (COP). The Ni(II)-incorporated EG-POR material Ni-EG-POR displayed excellent OER and MOR activities in an alkaline medium. The materials were thoroughly characterized using 13C solid-state NMR, Fourier transform infrared spectroscopy (FT-IR), Brunauer-Emmett-Teller (BET) surface area analyzer, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), thermogravimetric analyzer (TGA), and powder X-ray diffraction (PXRD) techniques. These organic-inorganic hybrid materials showed high chemical and thermal stability. Ni-EG-POR requires an overpotential of 400 mV (vs RHE) in OER and 190 mV (vs RHE) in MOR to achieve a current density of 10 mA cm-2. In addition, the catalyst also showed excellent chronoamperometric and chronopotentiometric stability, indicating that the catalyst can provide stable current over a longer period and its potential as a non-noble metal MOR catalyst.

4.
Inorg Chem ; 62(29): 11426-11435, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37418702

ABSTRACT

Sulfite (SO32-) is considered a highly toxic anion for living organisms. Herein, we report the synthesis of copper immobilized over a 2D hexagonally ordered mesoporous silica material CuMS as an electrochemical and colorimetric dual-technique-based sensing platform for sulfite detection. The immobilization of copper on silica was achieved through the bis[3-(triethoxysilyl)propyl]tetrasulfide (TEPTS) ligand. Morphological and physical properties of the material were confirmed by several characterization techniques, including scanning electron microscopy, transmission electron microscopy, X-ray diffraction, N2 sorption, and X-ray photoelectron spectroscopy. The CuMS material retained mesoporosity with a narrow pore size distribution (D ≈ 5.4 nm) and a high Brunauer-Emmett-Teller surface area of 682 m2 g-1 after the immobilization of copper. The prepared catalyst shows promising electrocatalytic activity toward sulfite oxidation. A linear variation in the peak current was obtained for SO32- oxidation in the 0.2-15 mM range with a high sensitivity of 62.08 µA cm-2, under optimum experimental conditions. The limit of detection (LOD) was found to be 1.14 nM. CuMS also shows excellent activity toward colorimetric detection of sulfite anions with an LOD of 0.4 nM. The proposed sensor shows high selectivity toward the sulfite anion, even in the presence of common interferents. The detection of sulfite in white wine with excellent recovery demonstrates the practical applicability of this sensor.

5.
Inorg Chem ; 62(10): 4136-4146, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36862998

ABSTRACT

To date, the fabrication of multifunctional nanoplatforms based on a porous organic polymer for electrochemical sensing of biorelevant molecules has received considerable attention in the search for a more active, robust, and sensitive electrocatalyst. Here, in this report, we have developed a new porous organic polymer based on porphyrin (TEG-POR) from a polycondensation reaction between a triethylene glycol-linked dialdehyde and pyrrole. The Cu(II) complex of the polymer Cu-TEG-POR shows high sensitivity and a low detection limit for glucose electro-oxidation in an alkaline medium. The characterization of the as-synthesized polymer was done by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and 13C CP-MAS solid-state NMR. The N2 adsorption/desorption isotherm was carried out at 77 K to analyze the porous property. TEG-POR and Cu-TEG-POR both show excellent thermal stability. The Cu-TEG-POR-modified GC electrode shows a low detection limit (LOD) value of 0.9 µM and a wide linear range (0.001-1.3 mM) with a sensitivity of 415.8 µA mM-1 cm-2 toward electrochemical glucose sensing. The interference of the modified electrode from ascorbic acid, dopamine, NaCl, uric acid, fructose, sucrose, and cysteine was insignificant. Cu-TEG-POR exhibits acceptable recovery for blood glucose detection (97.25-104%), suggesting its scope in the future for selective and sensitive nonenzymatic glucose detection in human blood.


Subject(s)
Copper , Porphyrins , Humans , Copper/chemistry , Porosity , Polymers , Electrochemical Techniques , Glucose/analysis , Electrodes
6.
Inorg Chem ; 61(46): 18390-18399, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36351189

ABSTRACT

The urea oxidation reaction (UOR) is an excellent alternative to the sluggish oxygen evolution reaction (OER) as an anode reaction for hydrogen generation via electrochemical water splitting. Here, a porphyrin-based conjugated porous polymer (CPP) has been developed through the polycondensation reaction of 2,6-diformyl-4-methylphenol and pyrrole (DMP-POR). The nickel(II) complex of this conjugated polymer Ni-DMP-POR shows efficient UOR in an alkaline medium. The as-synthesized materials were characterized by solid-state 13C CP-MAS, thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The porous property of the materials was characterized by N2 adsorption/desorption isotherms at 77 K. Both DMP-POR and Ni-DMP-POR showed excellent thermal stability. The Ni-DMP-POR exhibits very good UOR in 1 M KOH and 0.33 M urea with an overpotential of 260 mV at 10 mA cm-2 and a Tafel slope of 48 mV dec-1. The catalyst also shows excellent chronoamperometric and chronopotentiometric stability, suggesting its future scope in sustainable hydrogen production from wastewater resources.


Subject(s)
Porphyrins , Porosity , Urea , Polymers , Spectroscopy, Fourier Transform Infrared , Phenols , Hydrogen
7.
Trans Indian Natl Acad Eng ; 5(3): 509-518, 2020.
Article in English | MEDLINE | ID: mdl-38624452

ABSTRACT

With 6.93M confirmed cases of COVID-19 worldwide, making individuals aware of their sanitary health and ongoing pandemic remains the only way to prevent the spread of this virus. Wearing masks is an important step in this prevention. Hence, there is a need for monitoring if people are wearing masks or not. Closed circuit television (CCTV) cameras endowed with computer vision function by embedded systems, have become popular in a wide range of applications, and can be used in this case for real time monitoring of people wearing masks or not. In this paper, we propose to model this task of monitoring as a special case of object detection. However, real-time scene parsing through object detection running on edge devices is very challenging, due to limited memory and computing power of embedded devices. To deal with these challenges, we used a few popular object detection algorithms such as YOLOv3, YOLOv3Tiny, SSD and Faster R-CNN and evaluated them on Moxa3K benchmark dataset. The results obtained from these evaluations help us to determine methods that are more efficient, faster, and thus are more suitable for real-time object detection specialized for this task.

8.
ACS Omega ; 4(15): 16360-16371, 2019 Oct 08.
Article in English | MEDLINE | ID: mdl-31616814

ABSTRACT

Ordered mesoporous carbon-supported gold nanoparticles (Au/OMC) have been fabricated in one step through a hard template method using gold nanoparticle-intercalated mesoporous silica (GMS) to explore two different catalytic properties, for example, electrocatalytic oxidation of methanol and colorimetric determination of glutathione (GSH). The catalytically inert but conducting nature of mesoporous carbon (OMC) and promising catalytic activity of gold nanoparticles (AuNPs) has inspired us to synthesize Au/OMC. The as-prepared Au/OMC catalyst was characterized by powder X-ray diffraction, N2 adsorption-desorption, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray analysis-elemental mapping, and X-ray photoelectron spectroscopy. The characterization results indicate that AuNPs are uniformly distributed on the surface of OMC. The conducting-OMC framework with a high surface area of Au/OMC provides superior transport of electrons through the porous surface of carbon matrix and resulted in its high efficiency and stability as an electrocatalyst for the oxidation of methanol in comparison to CMK-3, SBA-15, and GMS in alkaline medium. The efficiency of Au/OMC toward methanol oxidation in alkaline medium is much higher in comparison to that in acidic medium. The lower value of I f/I b in the acidic medium in comparison to that in the alkaline medium clearly indicates that the oxidation process with Au/OMC as a catalyst is much more superior in alkaline medium with better tolerance toward the accumulation of intermediate CO species on the active surface area. Furthermore, the Au/OMC catalyst is successfully utilized for the detection and quantification of GSH spectrophotometrically with a limit of detection value of 0.604 nM.

SELECTION OF CITATIONS
SEARCH DETAIL
...