Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters










Publication year range
2.
Biochemistry ; 61(8): 656-664, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35302352

ABSTRACT

A challenge within the field of bioconjugation is developing probes to uncover novel information on proteins and other biomolecules. Intracellular delivery of these probes offers the promise of giving relevant context to this information, and these probes can serve as hypothesis-generating tools within complex systems. Leveraging the utility of triazabutadiene chemistry, herein, we discuss the development of a probe that undergoes reduction-mediated deprotection to rapidly deliver a benzene diazonium ion (BDI) into cells. The intracellular BDI resulted in an increase in global tyrosine phosphorylation levels. Seeing phosphatase dysregulation as a potential source of this increase, a tyrosine phosphatase (PTP1B) was tested and shown to be both inhibited and covalently modified by the BDI. In addition to the expected azobenzene formation at tyrosine side chains, key reactive histidine residues were also modified.


Subject(s)
Benzene , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Ions , Phosphorylation , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Proteins/chemistry , Tyrosine/metabolism
3.
ACS Med Chem Lett ; 8(8): 835-840, 2017 Aug 10.
Article in English | MEDLINE | ID: mdl-28835798

ABSTRACT

Adenosine A2A receptor (A2AAdoR) antagonism is a nondopaminergic approach to Parkinson's disease treatment that is under development. Earlier we had reported the therapeutic potential of 7-methoxy-4-morpholino-benzothiazole derivatives as A2AAdoR antagonists. We herein described a novel series of [1,2,4]triazolo[5,1-f]purin-2-one derivatives that displays functional antagonism of the A2A receptor with a high degree of selectivity over A1, A2B, and A3 receptors. Compounds from this new scaffold resulted in the discovery of highly potent, selective, stable, and moderate brain penetrating compound 33. Compound 33 endowed with satisfactory in vitro and in vivo pharmacokinetics properties. Compound 33 demonstrated robust oral efficacies in two commonly used models of Parkinson's disease (haloperidol-induced catalepsy and 6-OHDA lesioned rat models) and depression (TST and FST mice models).

4.
Eur J Med Chem ; 134: 218-229, 2017 Jul 07.
Article in English | MEDLINE | ID: mdl-28415011

ABSTRACT

Adenosine induces bronchial hyperresponsiveness and inflammation in asthmatics through activation of A2B adenosine receptor (A2BAdoR). Selective antagonists have been shown to attenuate airway reactivity and improve inflammatory conditions in pre-clinical studies. Hence, the identification of novel, potent and selective A2BAdoR antagonist may be beneficial for the potential treatment of asthma and Chronic Obstructive Pulmonary Disease (COPD). Towards this effort, we explored several prop-2-ynylated C8-aryl or heteroaryl substitutions on xanthine chemotype and found that 1-prop-2-ynyl-1H-pyrazol-4-yl moiety was better tolerated at the C8 position. Compound 59, exhibited binding affinity (Ki) of 62 nM but was non-selective for A2BAdoR over other AdoRs. Incorporation of substituted phenyl on the terminal acetylene increased the binding affinity (Ki) significantly to <10 nM. Various substitutions on terminal phenyl group and different alkyl substitutions on N-1 and N-3 were explored to improve the potency, selectivity for A2BAdoR and the solubility. In general, compounds with meta-substituted phenyl provided better selectivity for A2BAdoR compared to that of para-substituted analogs. Substitutions such as basic amines like pyrrolidine, piperidine, piperazine or cycloalkyls with polar group were tried on terminal acetylene, keeping in mind the poor solubility of xanthine analogs in general. However, these substitutions led to a decrease in affinity compared to compound 59. Subsequent SAR optimization resulted in identification of compound 46 with high human A2BAdoR affinity (Ki = 13 nM), selectivity against other AdoR subtypes and with good pharmacokinetic properties. It was found to be a potent functional A2BAdoR antagonist with a Ki of 8 nM in cAMP assay in hA2B-HEK293 cells and an IC50 of 107 nM in IL6 assay in NIH-3T3 cells. Docking study was performed to rationalize the observed affinity data. Structure-activity relationship (SAR) studies also led to identification of compound 36 as a potent A2BAdoR antagonist with Ki of 1.8 nM in cAMP assay and good aqueous solubility of 529 µM at neutral pH. Compound 46 was further tested for in vivo efficacy and found to be efficacious in ovalbumin-induced allergic asthma model in mice.


Subject(s)
Adenosine A2 Receptor Antagonists/chemistry , Adenosine A2 Receptor Antagonists/therapeutic use , Asthma/drug therapy , Receptor, Adenosine A2B/metabolism , Xanthine/chemistry , Xanthine/therapeutic use , Adenosine A2 Receptor Antagonists/metabolism , Adenosine A2 Receptor Antagonists/pharmacokinetics , Animals , Asthma/chemically induced , Asthma/metabolism , Dogs , Drug Design , Hep G2 Cells , Humans , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred C57BL , Microsomes, Liver/metabolism , Molecular Docking Simulation , Ovalbumin , Rats , Receptor, Adenosine A2B/chemistry , Xanthine/metabolism , Xanthine/pharmacokinetics
5.
Methods Mol Biol ; 1596: 307-319, 2017.
Article in English | MEDLINE | ID: mdl-28293895

ABSTRACT

The over 500 human protein kinases are estimated to phosphorylate at least one-third of the proteome. This posttranslational modification is of paramount importance to intracellular signaling and its deregulation is linked to numerous diseases. Deciphering the specific cellular role of a protein kinase of interest remains challenging given their structural similarity and potentially overlapping activity. In order to exert control over the activity of user-defined kinases and allow for understanding and engineering of complex signal transduction pathways, we have designed ligand inducible split protein kinases. In this approach, protein kinases are dissected into two fragments that cannot spontaneously assemble and are thus inactive. The two kinase fragments are attached to chemical inducers of dimerization (CIDs) that allow for ligand induced heterodimerization and concomitant activation of kinase activity.


Subject(s)
Protein Kinases/metabolism , Small Molecule Libraries/metabolism , Animals , Cell Line , Dimerization , HEK293 Cells , Humans , Ligands , Phosphorylation/physiology , Protein Processing, Post-Translational/physiology , Rabbits , Signal Transduction/physiology
6.
J Med Chem ; 60(2): 681-694, 2017 01 26.
Article in English | MEDLINE | ID: mdl-28055204

ABSTRACT

Our initial structure-activity relationship studies on 7-methoxy-4-morpholino-benzothiazole derivatives featured by aryloxy-2-methylpropanamide moieties at the 2-position led to identification of compound 25 as a potent and selective A2A adenosine receptor (A2AAdoR) antagonist with reasonable ADME and pharmacokinetic properties. However, poor intrinsic solubility and low to moderate oral bioavailability made this series unsuitable for further development. Further optimization using structure-based drug design approach resulted in discovery of potent and selective adenosine A2A receptor antagonists bearing substituted 1-methylcyclohexyl-carboxamide groups at position 2 of the benzothiazole scaffold and endowed with better solubility and oral bioavailability. Compounds 41 and 49 demonstrated a number of positive attributes with respect to in vitro ADME properties. Both compounds displayed good pharmacokinetic properties with 63% and 61% oral bioavailability, respectively, in rat. Further, compound 49 displayed oral efficacy in 6-OHDA lesioned rat model of Parkinson diseases.


Subject(s)
Adenosine A2 Receptor Antagonists/pharmacology , Benzothiazoles/pharmacology , Cyclohexanols/pharmacology , Receptor, Adenosine A2A/metabolism , Adenosine A2 Receptor Antagonists/chemical synthesis , Adenosine A2 Receptor Antagonists/pharmacokinetics , Administration, Oral , Animals , Antiparkinson Agents/chemical synthesis , Antiparkinson Agents/pharmacokinetics , Antiparkinson Agents/pharmacology , Benzothiazoles/chemical synthesis , Benzothiazoles/pharmacokinetics , Cyclohexanols/chemical synthesis , Cyclohexanols/pharmacokinetics , Drug Design , HEK293 Cells , Humans , Levodopa/pharmacology , Male , Microsomes, Liver/metabolism , Molecular Docking Simulation , Rats, Wistar , Structure-Activity Relationship
7.
Eur J Med Chem ; 127: 986-996, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-27842891

ABSTRACT

A2BAdoR is a low affinity adenosine receptor that functions by Gs mediated elevation of cAMP and subsequent downstream signaling. The receptor has been implicated in lung inflammatory disorders like COPD and asthma. Several potent and selective A2BAdoR antagonists have been reported in literature, however most of the compounds suffer from poor pharmacokinetic profile. Therefore, with the aim to identify novel, potent and selective A2BAdoR antagonists with improved pharmacokinetic properties, we first explored more constrained form of MRS-1754 (4). To improve the metabolic stability, several linker modifications were attempted as replacement of amide linker along with different phenyl or other heteroaryls between C8 position of xanthine head group and terminal phenyl ring. SAR optimization resulted in identification of two novel A2BAdoR antagonists, 8-{1-[5-Oxo-1-(4-trifluoromethyl-phenyl)-pyrrolidin-3-ylmethyl]-1H-pyrazol-4-yl}-1,3-dipropyl-xanthine (31) and 8-(1-{2-Oxo-2-[4-(3-trifluoromethyl-phenyl)-piperazin-1-yl]-ethyl}-1H-pyrazol-4-yl)-1,3-dipropyl-xanthine (65), with high binding affinity (Ki = 1 and 1.5 nM, respectively) and selectivity for A2BAdoR with very good functional potency of 0.9 nM and 4 nM, respectively. Compound 31 and 65 also displayed good pharmacokinetic properties in mice with 27% and 65% oral bioavailability respectively. When evaluated in in vivo mice model of asthma, compound 65 also inhibited airway inflammation and airway reactivity in ovalbumin induced allergic asthma at 3 mpk dose.


Subject(s)
Adenosine A2 Receptor Antagonists/chemical synthesis , Adenosine A2 Receptor Antagonists/pharmacology , Drug Design , Receptor, Adenosine A2B/metabolism , Xanthine/chemical synthesis , Xanthine/pharmacology , Adenosine A2 Receptor Antagonists/chemistry , Animals , Brain/drug effects , Brain/metabolism , Chemistry Techniques, Synthetic , Male , Mice , Structure-Activity Relationship , Xanthine/chemistry
8.
Biochemistry ; 54(16): 2632-43, 2015 Apr 28.
Article in English | MEDLINE | ID: mdl-25844633

ABSTRACT

The recognition of helical BH3 domains by Bcl-2 homology (BH) receptors plays a central role in apoptosis. The residues that determine specificity or promiscuity in this interactome are difficult to predict from structural and computational data. Using a cell free split-luciferase system, we have generated a 276 pairwise interaction map for 12 alanine mutations at the binding interface for three receptors, Bcl-xL, Bcl-2, and Mcl-1, and interrogated them against BH3 helices derived from Bad, Bak, Bid, Bik, Bim, Bmf, Hrk, and Puma. This panel, in conjunction with previous structural and functional studies, starts to provide a more comprehensive portrait of this interactome, explains promiscuity, and uncovers surprising details; for example, the Bcl-xL R139A mutation disrupts binding to all helices but the Bad-BH3 peptide, and Mcl-1 binding is particularly perturbed by only four mutations of the 12 tested (V220A, N260A, R263A, and F319A), while Bcl-xL and Bcl-2 have a more diverse set of important residues depending on the bound helix.


Subject(s)
Myeloid Cell Leukemia Sequence 1 Protein/chemistry , Proto-Oncogene Proteins c-bcl-2/chemistry , bcl-X Protein/chemistry , Amino Acid Substitution , Animals , Cell-Free System , Fireflies , Humans , Luciferases, Firefly , Mutation, Missense , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Peptide Mapping , Protein Structure, Secondary , Protein Structure, Tertiary , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , bcl-X Protein/genetics , bcl-X Protein/metabolism
9.
Methods Mol Biol ; 1248: 95-104, 2015.
Article in English | MEDLINE | ID: mdl-25616328

ABSTRACT

Protein kinases are implicated in diverse signaling cascades and have been targeted with small molecules that typically bind the conserved ATP-binding active site. These inhibitors are often promiscuous and target multiple protein kinases, which has led to the development of alternate strategies to discover selective ligands. We have recently described a fragment-based selection approach, where a small-molecule warhead can be non-covalently tethered to a phage-displayed library of cyclic peptides. This approach led to the conversion of the promiscuous kinase inhibitor, staurosporine, into a selective bivalent inhibitor.


Subject(s)
Drug Discovery , Peptide Library , Peptides, Cyclic , Protein Kinase Inhibitors , Protein Kinases/chemistry , Animals , Humans , Peptides, Cyclic/chemical synthesis , Peptides, Cyclic/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Staurosporine/chemistry
10.
J Am Chem Soc ; 136(49): 17078-86, 2014 Dec 10.
Article in English | MEDLINE | ID: mdl-25409264

ABSTRACT

Protein kinases phosphorylate client proteins, while protein phosphatases catalyze their dephosphorylation and thereby in concert exert reversible control over numerous signal transduction pathways. We have recently reported the design and validation of split-protein kinases that can be conditionally activated by an added small molecule chemical inducer of dimerization (CID), rapamycin. Herein, we provide the rational design and validation of three split-tyrosine phosphatases (PTPs) attached to FKBP and FRB, where catalytic activity can be modulated with rapamycin. We further demonstrate that the orthogonal CIDs, abscisic acid and gibberellic acid, can be used to impart control over the activity of split-tyrosine kinases (PTKs). Finally, we demonstrate that designed split-phosphatases and split-kinases can be activated by orthogonal CIDs in mammalian cells. In sum, we provide a methodology that allows for post-translational orthogonal small molecule control over the activity of user defined split-PTKs and split-PTPs. This methodology has the long-term potential for both interrogating and redesigning phosphorylation dependent signaling pathways.


Subject(s)
Protein Tyrosine Phosphatases/chemistry , Protein-Tyrosine Kinases/chemistry , Dimerization , HEK293 Cells , Humans , Models, Molecular , Protein Tyrosine Phosphatases/genetics , Protein Tyrosine Phosphatases/metabolism , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism
11.
PLoS One ; 9(5): e97005, 2014.
Article in English | MEDLINE | ID: mdl-24819048

ABSTRACT

Cough is a protective reflex action that helps clear the respiratory tract which is continuously exposed to airborne environmental irritants. However, chronic cough presents itself as a disease in its own right and despite its global occurrence; the molecular mechanisms responsible for cough are not completely understood. Transient receptor potential ankyrin1 (TRPA1) is robustly expressed in the neuronal as well as non-neuronal cells of the respiratory tract and is a sensor of a wide range of environmental irritants. It is fast getting acceptance as a key biological sensor of a variety of pro-tussive agents often implicated in miscellaneous chronic cough conditions. In the present study, we demonstrate in vitro direct functional activation of TRPA1 receptor by citric acid which is routinely used to evoke cough in preclinical and clinical studies. We also show for the first time that a potent and selective TRPA1 antagonist GRC 17536 inhibits citric acid induced cellular Ca(+2) influx in TRPA1 expressing cells and the citric acid induced cough response in guinea pigs. Hence our data provides a mechanistic link between TRPA1 receptor activation in vitro and cough response induced in vivo by citric acid. Furthermore, we also show evidence for TRPA1 activation in vitro by the TLR4, TLR7 and TLR8 ligands which are implicated in bacterial/respiratory virus pathogenesis often resulting in chronic cough. In conclusion, this study highlights the potential utility of TRPA1 antagonist such as GRC 17536 in the treatment of miscellaneous chronic cough conditions arising due to diverse causes but commonly driven via TRPA1.


Subject(s)
Antitussive Agents/pharmacology , Calcium Channels/metabolism , Cough/drug therapy , Cough/metabolism , Nerve Tissue Proteins/metabolism , Transient Receptor Potential Channels/metabolism , Animals , Antitussive Agents/therapeutic use , Biological Transport/drug effects , Calcium/metabolism , Cell Line , Citric Acid/pharmacology , Cough/chemically induced , Guinea Pigs , Humans , Ligands , Male , TRPA1 Cation Channel , Toll-Like Receptors/metabolism
12.
J Am Chem Soc ; 136(10): 3995-4002, 2014 Mar 12.
Article in English | MEDLINE | ID: mdl-24533431

ABSTRACT

The activity of protein kinases are naturally gated by a variety of physiochemical inputs, such as phosphorylation, metal ions, and small molecules. In order to design protein kinases that can be gated by user-defined inputs, we describe a sequence dissimilarity based approach for identifying sites in protein kinases that accommodate 25-residue loop insertion while retaining catalytic activity. We further demonstrate that the successful loop insertion mutants provide guidance for the dissection of protein kinases into two fragments that cannot spontaneously assemble and are thus inactive but can be converted into ligand-gated catalytically active split-protein kinases. We successfully demonstrate the feasibility of this approach with Lyn, Fak, Src, and PKA, which suggests potential generality.


Subject(s)
Mutagenesis, Insertional , Protein Kinases/chemistry , Protein Kinases/genetics , Amino Acid Sequence , Animals , Cloning, Molecular , Cyclic AMP-Dependent Protein Kinases/chemistry , Cyclic AMP-Dependent Protein Kinases/genetics , Focal Adhesion Protein-Tyrosine Kinases/chemistry , Focal Adhesion Protein-Tyrosine Kinases/genetics , Humans , Mice , Models, Molecular , Molecular Sequence Data , Protein Conformation , Sequence Alignment , src-Family Kinases/chemistry , src-Family Kinases/genetics
13.
Curr Pharm Des ; 18(20): 2936-45, 2012.
Article in English | MEDLINE | ID: mdl-22571662

ABSTRACT

Over the past decade, therapeutics that target subsets of the 518 human protein kinases have played a vital role in the fight against cancer. Protein kinases are typically targeted at the adenosine triphosphate (ATP) binding cleft by type I and II inhibitors, however, the high sequence and structural homology shared by protein kinases, especially at the ATP binding site, inherently leads to polypharmacology. In order to discover or design truly selective protein kinase inhibitors as both pharmacological reagents and safer therapeutic leads, new efforts are needed to target kinases outside the ATP cleft. Recent advances include the serendipitous discovery of type III inhibitors that bind a site proximal to the ATP pocket as well as the truly allosteric type IV inhibitors that target protein kinases distal to the substrate binding pocket. These new classes of inhibitors are often selective but usually display moderate affinities. In this review we will discuss the different classes of inhibitors with an emphasis on bisubstrate and bivalent inhibitors (type V) that combine different inhibitor classes. These inhibitors have the potential to couple the high affinity and potency of traditional active site targeted small molecule inhibitors with the selectivity of inhibitors that target the protein kinase surface outside ATP cleft.


Subject(s)
Drug Delivery Systems , Protein Kinase Inhibitors/pharmacology , Protein Kinases/drug effects , Adenosine Triphosphate/metabolism , Allosteric Regulation , Binding Sites , Drug Design , Humans , Protein Binding , Protein Kinase Inhibitors/adverse effects , Protein Kinases/metabolism
14.
J Med Chem ; 55(4): 1526-37, 2012 Feb 23.
Article in English | MEDLINE | ID: mdl-22257127

ABSTRACT

Using a newly developed competitive binding assay dependent upon the reassembly of a split reporter protein, we have tested the promiscuity of a panel of reported kinase inhibitors against the AGC group. Many non-AGC targeted kinase inhibitors target multiple members of the AGC group. In general, structurally similar inhibitors consistently exhibited activity toward the same target as well as toward closely related kinases. The inhibition data was analyzed to test the predictive value of either using identity scores derived from residues within 6 Å of the active site or identity scores derived from the entire kinase domain. The results suggest that the active site identity in certain cases may be a stronger predictor of inhibitor promiscuity. The overall results provide general guidelines for establishing inhibitor selectivity as well as for the future design of inhibitors that either target or avoid AGC kinases.


Subject(s)
Luciferases/genetics , Protein Kinase Inhibitors/pharmacology , Animals , Binding, Competitive , Catalytic Domain , Cell-Free System , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/antagonists & inhibitors , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/genetics , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/metabolism , Cyclic GMP-Dependent Protein Kinase Type I , Cyclic GMP-Dependent Protein Kinases/antagonists & inhibitors , Cyclic GMP-Dependent Protein Kinases/genetics , Cyclic GMP-Dependent Protein Kinases/metabolism , Databases, Factual , Genes, Reporter , Protein Kinase C/antagonists & inhibitors , Protein Kinase C/genetics , Protein Kinase C/metabolism , Protein Kinase Inhibitors/chemistry , Rabbits , Recombinant Fusion Proteins/antagonists & inhibitors , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Structure-Activity Relationship
15.
Curr Opin Chem Biol ; 15(6): 789-97, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22070901

ABSTRACT

It has been estimated that 650,000 protein-protein interactions exist in the human interactome (Stumpf et al., 2008), a subset of all possible macromolecular partnerships that dictate life. Thus there is a continued need for the development of sensitive and user-friendly methods for cataloguing biomacromolecules in complex environments and for detecting their interactions, modifications, and cellular location. Such methods also allow for establishing differences in the interactome between a normal and diseased cellular state and for quantifying the outcome of therapeutic intervention. A promising approach for deconvoluting the role of macromolecular partnerships is split-protein reassembly, also called protein fragment complementation. This approach relies on the appropriate fragmentation of protein reporters, such as the green fluorescent protein or firefly luciferase, which when attached to possible interacting partners can reassemble and regain function, thereby confirming the partnership. Split-protein methods have been effectively utilized for detecting protein-protein interactions in cell-free systems, Escherichia coli, yeast, mammalian cells, plants, and live animals. Herein, we present recent advances in engineering split-protein systems that allow for the rapid detection of ternary protein complexes, small molecule inhibitors, as well as a variety of macromolecules including nucleic acids, poly(ADP) ribose, and iron sulfur clusters. We also present advances that combine split-protein systems with chemical inducers of dimerization strategies that allow for regulating the activity of orthogonal split-proteases as well as aid in identifying enzyme inhibitors. Finally, we discuss autoinhibition strategies leading to turn-on sensors as well as future directions in split-protein methodology including possible therapeutic approaches.


Subject(s)
Green Fluorescent Proteins/analysis , Luciferases, Firefly/analysis , Molecular Imaging/methods , Protein Engineering/methods , Protein Interaction Mapping/methods , Animals , Biosensing Techniques/methods , Cell-Free System/chemistry , Cell-Free System/metabolism , Enzyme Inhibitors/chemistry , Fluorescence Resonance Energy Transfer , Genes, Reporter , Green Fluorescent Proteins/metabolism , Humans , Luciferases, Firefly/metabolism , Protein Binding , Protein Multimerization , Protein Structure, Tertiary , Small Molecule Libraries/chemistry , Spectrometry, Fluorescence
16.
Bioorg Med Chem ; 19(22): 6743-9, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-22004849

ABSTRACT

The critical role of Aurora kinase in cell cycle progression and its deregulation in cancer has garnered significant interest. As such, numerous Aurora targeted inhibitors have been developed to date, almost all of which target the ATP cleft at the active site. These current inhibitors display polypharmacology; that is, they target multiple kinases, and some are being actively pursued as therapeutics. Currently, there are no general approaches for targeting Aurora at sites remote from the active site, which in the long term may provide new insights regarding the inhibition of Aurora as well as other protein kinases, and provide pharmacological tools for dissecting Aurora kinase biology. Toward this long term goal, we have recently developed a bivalent selection strategy that allows for the identification of cyclic peptides that target the surface of PKA, while the active site is blocked by an ATP-competitive compound. Herein, we extend this approach to Aurora kinase (Aurora A), which required significant optimization of selection conditions to eliminate background peptides that target the streptavidin matrix upon which the kinases are immobilized. Using our optimized selection conditions, we have successfully selected several cyclic peptide ligands against Aurora A. Two of these inhibitors demonstrated IC(50) values of 10 µM and were further interrogated. The CTRPWWLC peptide was shown to display a noncompetitive mode of inhibition suggesting that alternate sites on Aurora beyond the ATP and peptide substrate binding site may be potentially targeted.


Subject(s)
Peptides, Cyclic/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Amino Acid Sequence , Aurora Kinase A , Aurora Kinases , Binding Sites , Humans , Models, Molecular , Peptides, Cyclic/chemistry , Protein Serine-Threonine Kinases/metabolism
17.
Chembiochem ; 12(15): 2353-64, 2011 Oct 17.
Article in English | MEDLINE | ID: mdl-21850719

ABSTRACT

Caspases play a central role in apoptosis, differentiation, and proliferation, and represent important therapeutic targets for treating cancer and inflammatory disorders. Toward the goal of developing new tools to probe caspase substrate cleavage specificity as well as to systematically interrogate caspase activation pathways, we have constructed and investigated a comprehensive panel of caspase biosensors with a split-luciferase enabled bioluminescent read out. We first interrogated the panel of caspase biosensors for substrate cleavage specificity of caspase 1-10 in widely utilized in vitro translation systems, namely, rabbit reticulocyte lysate (RRL) and wheat germ extract (WGE). Commercial RRL was found to be unsuitable for investigating caspase specificity, owing to surprising levels of endogenous caspase activity, while specificity profiles of the caspase sensors in WGE agree very well with traditional peptide probes. The full panel of biosensors was utilized for studying caspase activation and inhibition in several mammalian cytosolic extracts, clearly demonstrating that they can be utilized to directly monitor activation or inhibition of procaspase 3/7. Furthermore, the complete panel of caspase biosensors also provided new insights into caspase activation pathways wherein we surprisingly discovered the activation of procaspase 3/7 by caspase 4/5.


Subject(s)
Biosensing Techniques/methods , Caspases/metabolism , Animals , Apoptosis , Cell Line , Cytosol/enzymology , Cytosol/metabolism , Enzyme Activation , Humans , Luminescent Measurements/methods , Models, Molecular , Rabbits , Recombinant Proteins/metabolism , Reticulocytes/enzymology , Reticulocytes/metabolism , Signal Transduction , Substrate Specificity , Triticum/enzymology
18.
Anal Chem ; 83(18): 7151-7, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21797230

ABSTRACT

Epigenetic modifications play an essential role in the regulation of gene expression and ultimately cell fate. Methylation of cytosine at CpG dinucleotides (mCpG) is an important epigenetic mark that has been correlated with cancer when present at promoter sites of tumor suppressor genes. To develop a rapid methodology for the direct assessment of global levels of DNA methylation, we first interrogated the methyl-CpG binding domains (MBDs), the Kaiso family of Cys(2)-His(2) zinc fingers, and an SET- and RING-associated domain using a split-luciferase reassembly methodology. We identified MBD1 as the most selective domain for the discrimination between mCpG and CpG sites with over 90-fold selectivity. Utilizing a bipartite strategy, we constructed a purely methylation-dependent bipartite sensor for the direct detection of global levels of DNA methylation by attaching MBD1 domains to each of the split-luciferase halves. This new sensor was validated for the direct determination of genomic DNA methylation levels in in vitro studies without any intervening chemical or enzymatic processing of DNA. Finally, we demonstrated that this bipartite sensor can be utilized for monitoring dose-dependent changes in global levels of methylation in DNA from HeLa cells challenged with 5-aza-2'-deoxycytidine, a DNA methyltransferase inhibitor.


Subject(s)
Biosensing Techniques/methods , DNA Methylation , DNA/metabolism , Luciferases/metabolism , Azacitidine/analogs & derivatives , Azacitidine/chemistry , CpG Islands , DNA (Cytosine-5-)-Methyltransferases/antagonists & inhibitors , DNA (Cytosine-5-)-Methyltransferases/metabolism , Decitabine , Genome, Human , HeLa Cells , Humans , Luciferases/genetics , Protein Structure, Tertiary , Zinc Fingers
19.
J Am Chem Soc ; 133(32): 12518-27, 2011 Aug 17.
Article in English | MEDLINE | ID: mdl-21520929

ABSTRACT

The integrity of the genetic information in all living organisms is constantly threatened by a variety of endogenous and environmental insults. To counter this risk, the DNA-damage response is employed for repairing lesions and maintaining genomic integrity. However, an aberrant DNA-damage response can potentially lead to genetic instability and mutagenesis, carcinogenesis, or cell death. To directly monitor DNA damage events in the context of native DNA, we have designed two new sensors utilizing genetically fragmented firefly luciferase (split luciferase). The sensors are comprised of a methyl-CpG binding domain (MBD) attached to one fragment of split luciferase for localizing the sensor to DNA (50-80% of the CpG dinucleotide sites in the genome are symmetrically methylated at cytosines), while a damage-recognition domain is attached to the complementary fragment of luciferase to probe adjacent nucleotides for lesions. Specifically, we utilized oxoguanine glycosylase 1 (OGG1) to detect 8-oxoguanine caused by exposure to reactive oxygen species and employed the damaged-DNA binding protein 2 (DDB2) for detection of pyrimidine dimer photoproducts induced by UVC light. These two sensors were optimized and validated using oligonucleotides, plasmids, and mammalian genomic DNA, as well as HeLa cells that were systematically exposed to a variety of environmental insults, demonstrating that this methodology utilizing MBD-directed DNA localization provides a simple, sensitive, and potentially general approach for the rapid profiling of specific chemical modifications associated with DNA damage and repair.


Subject(s)
Biosensing Techniques/methods , DNA Damage , DNA/chemistry , Guanine/analogs & derivatives , Pyrimidine Dimers/analysis , Animals , DNA/metabolism , DNA Glycosylases/metabolism , Fireflies/genetics , Guanine/analysis , Guanine/metabolism , HeLa Cells , Humans , Luciferases, Firefly/genetics , Photolysis , Pyrimidine Dimers/metabolism , Reactive Oxygen Species/metabolism
20.
Future Med Chem ; 3(1): 29-43, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21428824

ABSTRACT

Many members of the protein kinase family have emerged as key targets for pharmacological intervention, most notably in cancer. However, the high sequence and structural homology shared by the more than 500 human protein kinases renders it exceedingly difficult to develop selective inhibitors. Most, if not all, existing inhibitors target multiple protein kinases. Current paradigm suggests that an inhibitor that targets multiple kinases and displays polypharmacology is not only acceptable but also often desirable as a therapeutic agent. However, as we move toward personalized medicine the currently acceptable promiscuity is likely to pose significant hurdles in terms of their therapeutic index, especially for diseases that necessitate long-term drug administration. Moreover, selective inhibitors are the only pharmacologically relevant route toward reagents for the dissection of complex signal transduction pathways. This article provides an overview of recent developments in the design of kinase inhibitors that display increasing selectivity by targeting regions outside the highly conserved ATP-binding pocket. These new approaches may pave the way to potentially new avenues for drug discovery while providing valuable tools for studying signal transduction.


Subject(s)
Drug Design , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Adenosine Triphosphate/metabolism , Allosteric Regulation , Amino Acid Sequence , Animals , Binding Sites , Humans , Models, Molecular , Molecular Sequence Data , Protein Kinases/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...