Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Drug Chem Toxicol ; 46(3): 557-565, 2023 May.
Article in English | MEDLINE | ID: mdl-35484852

ABSTRACT

The hemolytic activity, in vitro as well as in vivo toxicity, and immunomodulatory potential of saponins-rich fraction of Asparagus adscendens Roxb. fruit (AA-SRF) have been assessed in this study in order to explore AA-SRF as an alternative safer adjuvant to standard Quil-A saponin. The AA-SRF showed lower hemolytic activity (HD50 = 301.01 ± 1.63 µg/ml) than Quil-A (HD50 = 17.15 ± 2.12 µg/ml). The sulforhodamine B assay also revealed that AA-SRF was less toxic to VERO cells (IC50≥200 ± 4.32 µg/ml) than Quil-A (IC50 = 60 ± 2.78 µg/ml). The AA-SRF did not lead to mortality in mice up to 1.6 mg and was much safer than Quil-A for in vivo use. Conversely, mice were subcutaneously immunized with OVA 100 µg alone or along with Alum (200 µg) or Quil-A (10 µg) or AA-SRF (50 µg/100 µg/200 µg) on days 0 and 14. The AA-SRF at 100 µg dose best supported the LPS/Con A primed splenocyte proliferation activity, elevated the serum OVA-specific total IgG antibody, IL-12, CD4 titer and upsurged CD3/CD19 expression in spleen as well as lymph node sections which in turn advocated its adjuvant potential. Thus, AA-SRF can be further studied for use as a safe alternative adjuvant in vaccines.


Subject(s)
Adjuvants, Immunologic , Asparagus Plant , Saponins , Animals , Mice , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/toxicity , Chlorocebus aethiops , Fruit , Immunoglobulin G , Ovalbumin , Saponins/immunology , Saponins/pharmacology , Saponins/toxicity , Vero Cells
2.
Sci Rep ; 12(1): 16295, 2022 09 29.
Article in English | MEDLINE | ID: mdl-36175438

ABSTRACT

Early and precise pregnancy diagnosis can reduce the calving interval by minimizing postpartum period. The present study explored the differential urinary metabolites between pregnant and non-pregnant Murrah buffaloes (Bubalus bubalis) during early gestation to identify potential pregnancy detection biomarkers. Urine samples were collected on day 0, 10, 18, 35 and 42 of gestation from the pregnant (n = 6) and on day 0, 10 and 18 post-insemination from the non-pregnant (n = 6) animals. 1H-NMR-based untargeted metabolomics followed by multivariate analysis initially identified twenty-four differentially expressed metabolites, among them 3-Hydroxykynurenine, Anthranilate, Tyrosine and 5-Hydroxytryptophan depicted consistent trends and matched the selection criteria of potential biomarkers. Predictive ability of these individual biomarkers through ROC curve analyses yielded AUC values of 0.6-0.8. Subsequently, a logistic regression model was constructed using the most suitable metabolite combination to improve diagnostic accuracy. The combination of Anthranilate, 3-Hydroxykynurenine, and Tyrosine yielded the best AUC value of 0.804. Aromatic amino acid biosynthesis, Tryptophan metabolism, Phenylalanine and Tyrosine metabolism were identified as potential pathway modulations during early gestation. The identified biomarkers were either precursors or products of these metabolic pathways, thus justifying their relevance. The study facilitates precise non-invassive urinary metabolite-based pen-side early pregnancy diagnostics in buffaloes, eminently before 21 days post-insemination.


Subject(s)
Bison , Buffaloes , 5-Hydroxytryptophan , Amino Acids, Aromatic , Animals , Female , Pregnancy , Tryptophan , Tyrosine
3.
Infect Genet Evol ; 98: 105211, 2022 03.
Article in English | MEDLINE | ID: mdl-35051653

ABSTRACT

The present investigation was conducted to rule out canine distemper (CD) diseases in Indian wild felids (Asiatic lions, tigers, leopards, snow leopards, clouded leopards, leopard cats, jungle cats, civet cats, fishing cat, and jaguar). The collected samples were screened for CD virus (CDV) by histopathology (HP), immunohistochemistry (IHC) and reverse transcriptase-polymerase chain reaction (RT-PCR) targeting H gene and N gene. The HP and IHC of suspected samples portrayed that 22 [11 leopards, 6 lions, 3 tigers, 1 snow leopard and 1 civet cat] out of 129 (17.05%) wild felids were positive for CD. The major pathological consequences were observed in spleen, lung, kidney and brain. The syncytia and intranuclear as well as intracytoplasmic eosinophilic inclusion bodies were seen in CDV infected cells. Although the histopathological lesions in spleen were more specific and consistent, however, the severe demyelinated leukoencephalitis (usually expected in CD infected dog) was not observed in the brain of any Indian wild felids. Conversely, the CDV antigen has been portrayed via IHC in pancreatic islets of Langerhans of tiger species for the first time in this study. Moreover, the concurrent CD and babesiosis has also been observed in a lioness without a usual coffee-coloured urine. The N gene and H gene of CDV isolates were amplified, sequenced and subsequently constructed the phylogenetic tree. The phylogenetic analysis of H gene revealed that the CDV isolates from Indian lion formed separate clade with CDV isolates from Indian dog and Indian palm civet cat. Furthermore, two CDV isolates from Indian tigers formed clade with Onderstepoort vaccine strain and CDV isolates from dogs of Uttar Pradesh, USA and UK. Evidently, CDV is circulating in Indian wild felids and causing diseases in them.


Subject(s)
Distemper Virus, Canine/isolation & purification , Distemper/virology , Felidae , Viverridae , Animals , Distemper/pathology , Distemper Virus, Canine/classification , Distemper Virus, Canine/genetics , Female , India , Male , Phylogeny , Species Specificity
4.
Toxicol Rep ; 8: 1970-1978, 2021.
Article in English | MEDLINE | ID: mdl-34934635

ABSTRACT

Metal/metal oxide nanoparticles show promise for various applications, including diagnosis, treatment, theranostics, sensors, cosmetics, etc. Their altered chemical, optical, magnetic, and structural properties have differential toxicity profiles. Depending upon their physical state, these NPs can also change their properties due to alteration in pH, interaction with proteins, lipids, blood cells, and genetic material. Metallic nanomaterials (comprised of a single metal element) tend to be relatively stable and do not readily undergo dissolution. Contrarily, metal oxide and metal alloy-based nanomaterials tend to exhibit a lower degree of stability and are more susceptible to dissolution and ion release when introduced to a biological milieu, leading to reactive oxygen species production and oxidative stress to cells. Since NPs have considerable mobility in various biological tissues, the investigation related to their adverse effects is a critical issue and required to be appropriately addressed before their biomedical applications. Short and long-term toxicity assessment of metal/metal oxide nanoparticles or their nano-formulations is of paramount importance to ensure the global biome's safety; otherwise, to face a fiasco. This article provides a comprehensive introspection regarding the effects of metal/metal oxides' physical state, their surface properties, the possible mechanism of actions along with the potential future strategy for remediation of their toxic effects.

5.
J Nanosci Nanotechnol ; 21(6): 3404-3452, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34739797

ABSTRACT

Emergence of multidrug resistance (MDR), extensively drug resistance (XDR) and pandrug resistance (PDR) strains of bacteria in communicable diseases of zoonotic and reverse zoonotic importance is the major hurdle of one health concept. Increasing level of resistance against antibiotics among bacterial population throughout the world, slow pace of new antibacterial drug discovery and enhanced pace of resistance development by pathogenic bacteria possess major challenges for human and animal health as well as life in future. Alternative management strategy in terms of improved prophylactic vaccine; early, easy and effective diagnostics and therapeutic drugs against those resistant bacteria is the need of the hour. In this context nanomedicine can fit into the multifaceted demands as an effective prophylactic and theranostic alternative to control the communicable diseases in a cost effective manner in the era of microbial resistance. The current review is focused towards delineating the application of nanomaterials as vaccine or drug delivery system, diagnostics and directly acting antimicrobial therapeutic agents in combating the important zoonotic and reverse zoonotic bacterial diseases in recent scenario along with their potential benefits, limitations and future prospects to formulate successful eradication strategies.


Subject(s)
Bacterial Zoonoses , Nanomedicine , Animals , Anti-Bacterial Agents/pharmacology , Bacteria , Humans , Precision Medicine
6.
Front Cell Dev Biol ; 9: 696668, 2021.
Article in English | MEDLINE | ID: mdl-34631696

ABSTRACT

Engineered nanomaterials are bestowed with certain inherent physicochemical properties unlike their parent materials, rendering them suitable for the multifaceted needs of state-of-the-art biomedical, and pharmaceutical applications. The log-phase development of nano-science along with improved "bench to beside" conversion carries an enhanced probability of human exposure with numerous nanoparticles. Thus, toxicity assessment of these novel nanoscale materials holds a key to ensuring the safety aspects or else the global biome will certainly face a debacle. The toxicity may span from health hazards due to direct exposure to indirect means through food chain contamination or environmental pollution, even causing genotoxicity. Multiple ways of nanotoxicity evaluation include several in vitro and in vivo methods, with in vitro methods occupying the bulk of the "experimental space." The underlying reason may be multiple, but ethical constraints in in vivo animal experiments are a significant one. Two-dimensional (2D) monoculture is undoubtedly the most exploited in vitro method providing advantages in terms of cost-effectiveness, high throughput, and reproducibility. However, it often fails to mimic a tissue or organ which possesses a defined three-dimensional structure (3D) along with intercellular communication machinery. Instead, microtissues such as spheroids or organoids having a precise 3D architecture and proximate in vivo tissue-like behavior can provide a more realistic evaluation than 2D monocultures. Recent developments in microfluidics and bioreactor-based organoid synthesis have eased the difficulties to prosper nano-toxicological analysis in organoid models surpassing the obstacle of ethical issues. The present review will enlighten applications of organoids in nanotoxicological evaluation, their advantages, and prospects toward securing commonplace nano-interventions.

7.
Mol Cell Biochem ; 476(1): 311-320, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32970284

ABSTRACT

Matrix Metalloproteinases (MMPs)-induced altered proteolysis of extracellular matrix proteins and basement membrane holds the key for tumor progression and metastasis. Matrix metalloproteinases-7 (Matrilysin), the smallest member of the MMP family also performs quite alike; thus serves as a potential candidate for anti-tumor immunotherapy. Conversely, being an endogenous tumor-associated antigen (TAA), targeting MMP-7 for immunization is challenging. But MMP-7-based xenovaccine can surmount the obstacle of poor immunogenicity and immunological tolerance, often encountered in TAA-based conventional vaccine for anti-tumor immunotherapy. This paves the way for investigating the potential of MMP-7-derived major histocompatibility complex (MHC)-binding peptides to elicit precise epitope-specific T-cell responses towards their possible inclusion in anti-tumor vaccine formulations. Perhaps it also ushers the path of achieving multiple epitope-based broad and universal cellular immunity. In current experiment, an immunoinformatics approach has been employed to identify the putative canine matrix matelloproteinases-7 (cMMP-7)-derived peptides with MHC class-I-binding motifs which can elicit potent antigen-specific immune responses in BALB/c mice. Immunization with the cMMP-7 DNA vaccine induced a strong CD8+ cytotoxic T lymphocytes (CTLs) and Th1- type response, with high level of gamma interferon (IFN-γ) production in BALB/c mice. The two identified putative MHC-I-binding nonameric peptides (Peptide32-40 and Peptide175-183) from cMMP-7 induced significant lymphocyte proliferation along with the production of IFN-γ from CD8+ T-cells in mice immunized with cMMP-7 DNA vaccine. The current observation has depicted the immunogenic potential of the two cMMP-7-derived nonapeptides for their possible exploitation in xenovaccine-mediated anti-tumor immunotherapy in mouse model.


Subject(s)
Histocompatibility Antigens Class I/immunology , Mammary Glands, Animal/metabolism , Matrix Metalloproteinase 7/metabolism , T-Lymphocytes/immunology , Animals , Antigens, Neoplasm/metabolism , Cancer Vaccines , Cell Line, Tumor , Cell Proliferation , Computational Biology , Dogs , Epitopes/chemistry , Female , HEK293 Cells , Humans , Immunoglobulin G/immunology , Immunotherapy/methods , Interferon-gamma , Lymphocyte Activation , Mice , Mice, Inbred BALB C , Peptides/chemistry , Protein Binding , T-Lymphocytes/cytology , T-Lymphocytes, Cytotoxic/immunology
8.
Front Microbiol ; 11: 1152, 2020.
Article in English | MEDLINE | ID: mdl-32582094

ABSTRACT

Viral emergence is an unpredictable but obvious event, particularly in the era of climate change and globalization. Efficient management of viral outbreaks depends on pre-existing knowledge and alertness. The potential hotspots of viral emergence often remain neglected and the information related to them is insufficient, particularly for emerging viruses. Viral replication and transmission rely upon usurping the host metabolic machineries. So altered host metabolic pathways can be exploited for containment of these viruses. Metabolomics provides the insight for tracing out such checkpoints. Consequently introspection of metabolic alteration at virus-host interface has evolved as prime area in current virology research. Chromatographic separation followed by mass spectrometry has been used as the predominant analytical platform in bulk of the analyses followed by nuclear magnetic resonance (NMR) and fluorescence based techniques. Although valuable information regarding viral replication and modulation of host metabolic pathways have been extracted but ambiguity often superseded the real events due to population effect over the infected cells. Exploration of cellular heterogeneity and differentiation of infected cells from the nearby healthy ones has become essential. Single cell metabolomics (SCM) emerges as necessity to explore such minute details. Mass spectrometry imaging (MSI) coupled with several soft ionization techniques such as electrospray ionization (ESI), laser ablation electrospray ionization (LAESI), matrix assisted laser desorption/ionization (MALDI), matrix-free laser desorption ionization (LDI) have evolved as the best suited platforms for SCM analyses. The potential of SCM has already been exploited to resolve several biological conundrums. Thus SCM is knocking at the door of virus-host interface.

9.
Curr Top Med Chem ; 20(11): 915-962, 2020.
Article in English | MEDLINE | ID: mdl-32209041

ABSTRACT

BACKGROUND: Emerging viral zoonotic diseases are one of the major obstacles to secure the "One Health" concept under the current scenario. Current prophylactic, diagnostic and therapeutic approaches often associated with certain limitations and thus proved to be insufficient for customizing rapid and efficient combating strategy against the highly transmissible pathogenic infectious agents leading to the disastrous socio-economic outcome. Moreover, most of the viral zoonoses originate from the wildlife and poor knowledge about the global virome database renders it difficult to predict future outbreaks. Thus, alternative management strategy in terms of improved prophylactic vaccines and their delivery systems; rapid and efficient diagnostics and effective targeted therapeutics are the need of the hour. METHODS: Structured literature search has been performed with specific keywords in bibliographic databases for the accumulation of information regarding current nanomedicine interventions along with standard books for basic virology inputs. RESULTS: Multi-arrayed applications of nanomedicine have proved to be an effective alternative in all the aspects regarding the prevention, diagnosis, and control of zoonotic viral diseases. The current review is focused to outline the applications of nanomaterials as anti-viral vaccines or vaccine/drug delivery systems, diagnostics and directly acting therapeutic agents in combating the important zoonotic viral diseases in the recent scenario along with their potential benefits, challenges and prospects to design successful control strategies. CONCLUSION: This review provides significant introspection towards the multi-arrayed applications of nanomedicine to combat several important zoonotic viral diseases.


Subject(s)
Drug Delivery Systems/methods , Viral Vaccines/chemistry , Viral Zoonoses/diagnosis , Viral Zoonoses/prevention & control , Viral Zoonoses/therapy , Viruses/drug effects , Animals , Animals, Wild , Biosensing Techniques , Drug Carriers/chemistry , Drug Compounding , Drug Liberation , Humans , Nanomedicine , Nanoparticles/chemistry , Polymers/chemistry , Polymers/metabolism , Transfection , Viruses/metabolism
10.
Curr Top Med Chem ; 20(11): 982-1008, 2020.
Article in English | MEDLINE | ID: mdl-32196449

ABSTRACT

Inflammatory Bowel Disease (IBD) is an umbrella term used to describe disorders that involve Crohn's disease (CD), ulcerative colitis (UC) and pouchitis. The disease occurrence is more prevalent in the working group population which not only hampers the well being of an individual but also has negative economical impact on society. The current drug regime used therapy is very costly owing to the chronic nature of the disease leading to several side effects. The condition gets more aggravated due to the lower concentration of drug at the desired site. Therefore, in the present scenario, a therapy is needed which can maximize efficacy, adhere to quality of life, minimize toxicity and doses, be helpful in maintaining and stimulating physical growth of mucosa with minimum disease complications. In this aspect, nanotechnology intervention is one promising field as it can act as a carrier to reduce toxicity, doses and frequency which in turn help in faster recovery. Moreover, nanomedicine and nanodiagnostic techniques will further open a new window for treatment in understanding pathogenesis along with better diagnosis which is poorly understood till now. Therefore the present review is more focused on recent advancements in IBD in the application of nanotechnology.


Subject(s)
Anti-Inflammatory Agents/chemistry , Drug Carriers/chemistry , Gastrointestinal Agents/chemistry , Inflammatory Bowel Diseases/drug therapy , Nanoparticles/chemistry , Polymers/chemistry , Administration, Oral , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/adverse effects , Biological Transport , Chemistry, Pharmaceutical , Drug Therapy, Combination , Gastrointestinal Absorption , Gastrointestinal Agents/administration & dosage , Gastrointestinal Agents/adverse effects , Humans , Metals/chemistry , Mucous Membrane/drug effects , Nanomedicine , Quality of Life , RNA, Small Interfering/metabolism , RNAi Therapeutics
11.
Int Immunopharmacol ; 82: 106370, 2020 Mar 07.
Article in English | MEDLINE | ID: mdl-32155464

ABSTRACT

The development of the tumorigenesis and angiogenesis through proteolytic cleavage of extracellular matrix protein and basement membranes is promoted by Matrix metelloproteinases-7 (MMP-7). Consequently, MMP-7 is presumed as potential target for mammary cancer immunotherapy. However, MMP-7 is an endogenous tumor associated antigen (TAA); therefore, immunization is challenging. In current study, a potent anti-tumor immune response has been elicited through recombinant bivalent plasmid pVIVO2.IL18.cMMP7 which subside the highly metastatic 4 T1 cell line induced mammary tumors and efficiently negate the existing challenge of using MMP-7 as immunotherapeutic target. Balb/c mice were immunized with canine MMP-7 (cMMP-7) using interleukine-18 (IL-18), as an immunoadjuvant, to explore the potential of the combination regarding elicitation of a potent anti-tumor immune response. Mice vaccinated with pVIVO2.IL18.cMMP7 DNA plasmid reduced the tumor growth significantly along with augmentation of the immune response to fight against tumor antigen as depicted by substantial enrichment of CD4+ and CD8+ population in splenocytes, infiltration of immune system cells in tumor tissue and enhanced survival time of mice. Further, splenocyte supernatant examination of the cytokines revealed that Th1 cytokines (IFN-γ and IL-2) were remarkably up-regulated demonstrating the stimulation of cell-mediated immune response. Thus the current observations vividly portray that administration of xenogeneic MMP-7 DNA vaccine bypasses the tolerance barrier.

12.
Curr Pharm Des ; 25(13): 1554-1579, 2019.
Article in English | MEDLINE | ID: mdl-31218956

ABSTRACT

BACKGROUND: Mycobacterium group contains several pathogenic bacteria including M. tuberculosis where the emergence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) is alarming for human and animal health around the world. The condition has further aggravated due to the speed of discovery of the newer drugs has been outpaced by the rate of resistance developed in microorganisms, thus requiring alternative combat strategies. For this purpose, nano-antimicrobials have emerged as a potential option. OBJECTIVE: The current review is focused on providing a detailed account of nanocarriers like liposome, micelles, dendrimers, solid lipid NPs, niosomes, polymeric nanoparticles, nano-suspensions, nano-emulsion, mesoporous silica and alginate-based drug delivery systems along with the recent updates on developments regarding nanoparticle-based therapeutics, vaccines and diagnostic methods developed or under pipeline with their potential benefits and limitations to combat mycobacterial diseases for their successful eradication from the world in future. RESULTS: Distinct morphology and the underlying mechanism of pathogenesis and resistance development in this group of organisms urge improved and novel methods for the early and efficient diagnosis, treatment and vaccination to eradicate the disease. Recent developments in nanotechnology have the potential to meet both the aspects: nano-materials are proven components of several efficient targeted drug delivery systems and the typical physicochemical properties of several nano-formulations have shown to possess distinct bacteriocidal properties. Along with the therapeutic aspects, nano-vaccines and theranostic applications of nano-formulations have grown in popularity in recent times as an effective alternative means to combat different microbial superbugs. CONCLUSION: Nanomedicine holds a bright prospect to perform a key role in global tuberculosis elimination program.


Subject(s)
Antitubercular Agents/pharmacology , Extensively Drug-Resistant Tuberculosis , Mycobacterium tuberculosis , Nanomedicine/trends , Tuberculosis, Multidrug-Resistant , Animals , Drug Delivery Systems , Humans
13.
Exp Appl Acarol ; 73(1): 115-127, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28894981

ABSTRACT

A comparative analysis of esterases in susceptible and resistant ticks revealed six types of esterases (EST-1b, EST-2b, EST-3b, EST-4b, EST-5b and EST-6b) in Rhipicephalus microplus and four types (EST-1h, EST-2h, EST-3h, EST-4h) in Hyalomma anatolicum using α-naphthyl acetate substrate. Inhibition studies with eserine sulfate, p-chloromercuribenzoate, copper sulphate and phenylmethylsulfonyl fluoride revealed a marked variation in band intensity between susceptible and resistant ticks, with the latter being more intense. Qualitative expression of EST-4b along with an extra band of EST-5b and EST-6b were indicative of deltamethrin and diazinon resistance in R. microplus, whereas qualitative expression of EST-4h was probably responsible for diazinon resistance in H. anatolicum. The data suggest that increased esterase activity may represent a detoxification strategy leading to the development of resistance in these tick populations.


Subject(s)
Acaricides/pharmacology , Arthropod Proteins/metabolism , Diazinon/pharmacology , Drug Resistance , Esterases/metabolism , Ixodidae/enzymology , Nitriles/pharmacology , Pyrethrins/pharmacology , Animals , Female , India , Ixodidae/drug effects , Rhipicephalus/drug effects , Rhipicephalus/enzymology
14.
Vet World ; 10(6): 616-622, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28717312

ABSTRACT

AIM: A comparative study was conducted on crossbred cattle and buffaloes to investigate the effect of feeding high and low roughage total mixed ration (TMR) diets on rumen metabolites and enzymatic profiles. MATERIALS AND METHODS: Three rumen-fistulated crossbred cattle and buffalo were randomly assigned as per 3×3 switch over design for 21-days. Three TMR diets consisting of concentrate mixture, wheat straw and green maize fodder in the ratios of (T1) 60:20:20, (T2) 40:30:30, and (T3) 20:40:40, respectively, were fed to the animals ad libitum. Rumen liquor samples were collected at 0, 2, 4, 6, and 8 h post feeding for the estimation of rumen biochemical parameters on 2 consecutive days in each trial. RESULTS: The lactic acid concentration and pH value were comparable in both species and treatments. Feed intake (99.77±2.51 g/kg body weight), ruminal ammonia nitrogen, and total nitrogen were significantly (p<0.05) higher in buffalo and in treatment group fed with high concentrate diet. Production of total volatile fatty acids (VFAs) was non-significant (p>0.05) among treatments and significantly (p<0.05) greater in crossbred cattle than buffaloes. Molar proportions of individual VFAs propionate (C3), propionate:butyrate (C3:C4), and (acetate+butyrate):propionate ([C2+C4]:C3) ratio in both crossbred cattle and buffalo were not affected by high or low roughage diet, but percentage of acetate and butyrate varied significantly (p<0.05) among treatment groups. Activities of microbial enzymes were comparable among species and different treatment groups. A total number of rumen protozoa were significantly (p<0.05) higher in crossbred cattle than buffaloes along with significantly (p<0.05) higher population in animal fed with high concentrate diet (T1). CONCLUSION: Rumen microbial population and fermentation depend on constituents of the treatment diet. However, microbial enzyme activity remains similar among species and different treatments. High concentrate diet increases number of rumen protozoa, and the number is higher in crossbred cattle than buffaloes.

15.
J Parasit Dis ; 41(1): 106-111, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28316396

ABSTRACT

The objective of the study was to reveal physiological link between sex specific engorgement pattern and evading mechanism of ticks against oxidative stress as well as acaricides. Quantitative determination of nitric oxide radical scavenging, superoxide dismutase activity and reduced glutathione (GSH) concentrations in salivary gland and gut extracts of male and female Hyalomma anatolicum anatolicum (Acari: Ixodidae) ticks established significant variation in antioxidant responses between two sexes of the ticks. Higher activity of these antioxidants and GSH depletion in females clearly indicate stronger antioxidant defense in female ticks which is to combat host mediated oxidative assault during feeding for greater engorgement and reproductive stress. The females are also better equipped with the mechanism of acaricide resistance as evidenced by higher expression of esterases than males in unfed whole tick extracts in current study.

16.
Anim Sci J ; 88(8): 1189-1197, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28026086

ABSTRACT

Improper or delayed pregnancy diagnosis has significant impact over animal production, particularly in buffaloes which inherently suffer from several reproductive inefficiencies. Thus the present study has undertaken to identify serum protein markers pertaining to early pregnancy diagnosis in buffaloes. Serum samples were collected from 10 pregnant Murrah Buffalo heifers at weekly intervals from days 0-35 post-artificial insemination and from 12 inseminated non-pregnant cyclic buffalo heifers on days 0, 7, 14 and 21. Two-dimensional gel electrophoresis and densitometric analysis revealed the presence of five protein spots showing average density fold change of ≥4 during early pregnancy. Mass spectrometry analysis identified these up-regulated proteins as anti-testosterone antibody light chain, apolipoprotein A-II precursor, serum amyloid A, cytokeratin type II, component IV isoform 1, which are have established roles in embryogenesis, but over-expression of the fifth identified protein immunoglobulin lambda light chain in pregnancy has been elucidated as a novel finding in the current study. Further, with bioinformatics analysis, potential antigenic B-cell epitopes were predicted for all these five proteins. An antibody cocktail-based approach involving antibodies against all these five up-regulated entire proteins or their epitopes could be developed for early detection of pregnancy in buffaloes. © 2016 Japanese Society of Animal Science.


Subject(s)
Antibodies/blood , Buffaloes , Pregnancy Tests/veterinary , Pregnancy, Animal , Animals , Apolipoprotein A-II/blood , Biomarkers/blood , Complement C4 , Electrophoresis, Gel, Two-Dimensional , Epitopes, B-Lymphocyte/blood , Female , Keratin-2/blood , Mass Spectrometry , Pregnancy , Pregnancy Tests/methods , Protein Precursors/blood , Serum Amyloid A Protein , Testosterone/immunology
17.
Vet World ; 9(11): 1294-1299, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27956784

ABSTRACT

AIM: Chhotanagpuri breed of sheep reared for mutton in Jharkhand, India, having problem of low litter size and body weight. The response of genetic improvement for traits with low heritability through traditional selection method is time-consuming. Therefore, marker-assisted selection based on a polymorphism study of suitable candidate gene can response quickly. Thus, this study was aimed at identification of different allelic and genotypic frequencies of Booroola fecundity (FecB) gene and its association with multiple birth and postnatal growth in Chhotanagpuri sheep. MATERIALS AND METHODS: DNA isolation and gene-specific amplification of FecB gene was performed from blood samples of from 92 Chhotanagpuri lambs maintained under similar feeding and management conditions. Custom nucleotide sequencing and single-strand conformational polymorphism analysis were performed to identify different genotypes with respect to the target gene. Statistical analysis was performed for determination of allelic and genotypic frequencies of FecB gene polymorphisms and its association with multiple birth and postnatal growth of lambs from birth to 52 weeks age. RESULTS: "AA," "AB," and "BB" genotypes were found at locus-1 as it is polymorphic for FecB gene while locus-2 was found to be monomorphic for FecB gene. Higher frequency of "A" allele at locus-1 was found in single born lambs, whereas "B" allele was predominant among multiple born lambs. The lambs having "BB" genotype weighed significantly (p≤0.01) heavier than those of "AB" and "AA" genotype at 52 weeks of age. CONCLUSION: "BB" genotype has emerged as favored genotype for multiple births and better growth indicator. Therefore, homozygous lambs for "B" allele should be selected and utilized in breeding program for better growth rate.

18.
Vet World ; 8(6): 772-6, 2015 Jun.
Article in English | MEDLINE | ID: mdl-27065646

ABSTRACT

AIM: Hyalomma anatolicum anatolicum ticks transmit Theileria annulata, causative agent of tropical theileriosis to cattle and buffaloes causing a major economic loss in terms of production and mortality in tropical countries. Ticks have evolved several immune evading strategies to circumvent hosts' rejection and achieve engorgement. Successful feeding of ticks relies on a pharmacy of chemicals located in their complex salivary glands and secreted saliva. These chemicals in saliva could inhibit host inflammatory responses through modulating cytokine secretion and detoxifying reactive oxygen species. Therefore, the present study was aimed to characterize anti-inflammatory peptides from salivary gland extract (SGE) of H. a. anatolicum ticks with a view that this information could be utilized in raising vaccines, designing synthetic peptides or peptidomimetics which can further be developed as novel therapeutics. MATERIALS AND METHODS: Salivary glands were dissected out from partially fed adult female H. a. anatolicum ticks and homogenized under the ice to prepare SGE. Gel filtration chromatography was performed using Sephadex G-50 column to fractionate the crude extract. Protein was estimated in each fraction and analyzed for identification of anti-inflammatory activity. Sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE) was run for further characterization of protein in desired fractions. RESULTS: A novel 28 kDa protein was identified in H. a. anatolicum SGE with pronounced anti-inflammatory activity. CONCLUSION: Purification and partial characterization of H. a. anatolicum SGE by size-exclusion chromatography and SDS-PAGE depicted a 28 kDa protein with prominent anti-inflammatory activity.

19.
Vet World ; 8(10): 1163-6, 2015 Oct.
Article in English | MEDLINE | ID: mdl-27047011

ABSTRACT

AIM: Objective of the present study was to investigate the relation between antioxidant status and postpartum anestrous (PPA) condition in Murrah buffalo. MATERIALS AND METHODS: Jugular blood samples were collected from two different groups of Murrah buffaloes each group consisting of 20 animals. Group I was of PPA and Group II were of cyclic buffaloes. The animals selected were examined for confirmation for cyclic and acyclic condition (>120 days) after calving by routine transrectal ultrasonography. Heard record was also used for cross confirmation. RESULTS: The analysis of antioxidants in plasma and hemolysates revealed that the levels of vitamin E, ß-carotene and reduced glutathione in plasma and superoxide dismutase (SOD) in hemolysate were significantly higher in cyclic animals than PPA animals. The levels of vitamin C, SOD and glutathione peroxidase in plasma did not show any significant difference among the two groups studied. The low antioxidant level in affected animals may predispose them toward PPA condition. CONCLUSION: Stress imposed by pregnancy and lactation affected the reproductive performance in PPA animals which might be inherently more susceptible to these stressors than those who were normal cyclic as all the animals were maintained under similar feeding and management practices.

20.
Comput Methods Programs Biomed ; 112(3): 422-31, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24016861

ABSTRACT

Automated visual tracking of cells from video microscopy has many important biomedical applications. In this paper, we track human monocyte cells in a fluorescent microscopic video using matching and linking of bipartite graphs. Tracking of cells over a pair of frames is modeled as a maximum cardinality minimum weight matching problem for a bipartite graph with a novel cost function. The tracking results are further refined using a rank-based filtering mechanism. Linking of cell trajectories over different frames are achieved through composition of bipartite matches. The proposed solution does not require any explicit motion model, is highly scalable, and, can effectively handle the entry and exit of cells. Our tracking accuracy of (97.97±0.94)% is superior than several existing methods [(95.66±2.39)%, (94.42±2.08)%, (81.22±5.75)%, (78.31±4.70)%] and is highly comparable (98.20±1.22)% to a recently published algorithm.


Subject(s)
Cell Tracking , Microscopy , Algorithms , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...