Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Microsc Microanal ; 30(2): 208-225, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38578956

ABSTRACT

In this article, porous GaN distributed Bragg reflectors (DBRs) were fabricated by epitaxy of undoped/doped multilayers followed by electrochemical etching. We present backscattered electron scanning electron microscopy (BSE-SEM) for sub-surface plan-view imaging, enabling efficient, non-destructive pore morphology characterization. In mesoporous GaN DBRs, BSE-SEM images the same branching pores and Voronoi-like domains as scanning transmission electron microscopy. In microporous GaN DBRs, micrographs were dominated by first porous layer features (45 nm to 108 nm sub-surface) with diffuse second layer (153 nm to 216 nm sub-surface) contributions. The optimum primary electron landing energy (LE) for image contrast and spatial resolution in a Zeiss GeminiSEM 300 was approximately 20 keV. BSE-SEM detects porosity ca. 295 nm sub-surface in an overgrown porous GaN DBR, yielding low contrast that is still first porous layer dominated. Imaging through a ca. 190 nm GaN cap improves contrast. We derived image contrast, spatial resolution, and information depth expectations from semi-empirical expressions. These theoretical studies echo our experiments as image contrast and spatial resolution can improve with higher LE, plateauing towards 30 keV. BSE-SEM is predicted to be dominated by the uppermost porous layer's uppermost region, congruent with experimental analysis. Most pertinently, information depth increases with LE, as observed.

2.
Ultramicroscopy ; 254: 113833, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37666104

ABSTRACT

The scanning capacitance microscope (SCM) is a powerful tool to characterise local electrical properties in GaN-based high electron mobility transistor (HEMT) structures with nanoscale resolution. We investigated the experimental setup and the imaging conditions to optimise the SCM contrast. As to the experimental setup, we show that the desired tip should be sharp (e.g., with the tip radius of ≤25nm) and its coating should be made of conductive doped diamond. Most importantly, its spring constant should be large to achieve stable tip-sample contact. The selected tip should be positioned close to both the edge and Ohmic contact of the sample. Regarding the imaging conditions, we also show that a dc bias should be applied in addition to an ac bias because the latter alone is not sufficient to deplete the two-dimensional electron gas (2DEG) in the AlGaN/GaN heterostructure. The approximate range of the effective dc bias values was found by measuring the local dC/dV-V curves, yielding, after further optimisation, two optimised dc bias values which provide strong, but opposite, SCM contrast. In comparison, the selected ac bias value has no significant impact on the SCM contrast. The described methodology could potentially also be applied to other types of HEMT structures, and highly-doped samples.

3.
ACS Photonics ; 10(9): 3374-3383, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37743941

ABSTRACT

Effective light extraction from optically active solid-state spin centers inside high-index semiconductor host crystals is an important factor in integrating these pseudo-atomic centers in wider quantum systems. Here, we report increased fluorescent light collection efficiency from laser-written nitrogen-vacancy (NV) centers in bulk diamond facilitated by micro-transfer printed GaN solid immersion lenses. Both laser-writing of NV centers and transfer printing of micro-lens structures are compatible with high spatial resolution, enabling deterministic fabrication routes toward future scalable systems development. The micro-lenses are integrated in a noninvasive manner, as they are added on top of the unstructured diamond surface and bonded by van der Waals forces. For emitters at 5 µm depth, we find approximately 2× improvement of fluorescent light collection using an air objective with a numerical aperture of NA = 0.95 in good agreement with simulations. Similarly, the solid immersion lenses strongly enhance light collection when using an objective with NA = 0.5, significantly improving the signal-to-noise ratio of the NV center emission while maintaining the NV's quantum properties after integration.

4.
Nanoscale Adv ; 5(9): 2610-2620, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37143793

ABSTRACT

Understanding the growth mechanisms of III-nitride nanowires is of great importance to realise their full potential. We present a systematic study of silane-assisted GaN nanowire growth on c-sapphire substrates by investigating the surface evolution of the sapphire substrates during the high temperature annealing, nitridation and nucleation steps, and the growth of GaN nanowires. The nucleation step - which transforms the AlN layer formed during the nitridation step to AlGaN - is critical for subsequent silane-assisted GaN nanowire growth. Both Ga-polar and N-polar GaN nanowires were grown with N-polar nanowires growing much faster than the Ga-polar nanowires. On the top surface of the N-polar GaN nanowires protuberance structures were found, which relates to the presence of Ga-polar domains within the nanowires. Detailed morphology studies revealed ring-like features concentric with the protuberance structures, indicating energetically favourable nucleation sites at inversion domain boundaries. Cathodoluminescence studies showed quenching of emission intensity at the protuberance structures, but the impact is limited to the protuberance structure area only and does not extend to the surrounding areas. Hence it should minimally affect the performance of devices whose functions are based on radial heterostructures, suggesting that radial heterostructures remain a promising device structure.

5.
ACS Appl Electron Mater ; 3(2): 813-824, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33644761

ABSTRACT

The performance of transistors designed specifically for high-frequency applications is critically reliant upon the semi-insulating electrical properties of the substrate. The suspected formation of a conductive path for radio frequency (RF) signals in the highly resistive (HR) silicon substrate itself has been long held responsible for the suboptimal efficiency of as-grown GaN high electron mobility transistors (HEMTs) at higher operating frequencies. Here, we reveal that not one but two discrete channels distinguishable by their carrier type, spatial extent, and origin within the metal-organic vapor phase epitaxy (MOVPE) growth process participate in such parasitic substrate conduction. An n-type layer that forms first is uniformly distributed in the substrate, and it has a purely thermal origin. Alongside this, a p-type layer is localized on the substrate side of the AlN/Si interface and is induced by diffusion of group-III element of the metal-organic precursor. Fortunately, maintaining the sheet resistance of this p-type layer to high values (∼2000 Ω/□) seems feasible with particular durations of either organometallic precursor or ammonia gas predose of the Si surface, i.e., the intentional introduction of one chemical precursor just before nucleation. It is proposed that the mechanism behind the control actually relies on the formation of disordered AlSiN between the crystalline AlN nucleation layer and the crystalline silicon substrate.

SELECTION OF CITATIONS
SEARCH DETAIL
...