Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 19(33): e2207953, 2023 08.
Article in English | MEDLINE | ID: mdl-37093195

ABSTRACT

The development of rapid, simple, and accurate bioassays for the detection of nucleic acids has received increasing demand in recent years. Here, localized surface plasmon resonance (LSPR) spectroscopy for the detection of an antimicrobial resistance gene, sulfhydryl variable ß-lactamase (blaSHV), which confers resistance against a broad spectrum of ß-lactam antibiotics is used. By performing limit of detection experiments, a 23 nucleotide (nt) long deoxyribonucleic acid (DNA) sequence down to 25 nm was detected, whereby the signal intensity is inversely correlated with sequence length (23, 43, 63, and 100 nt). In addition to endpoint measurements of hybridization events, the setup also allowed to monitor the hybridization events in real-time, and consequently enabled to extract kinetic parameters of the studied binding reaction. Performing LSPR measurements using single nucleotide polymorphism (SNP) variants of blaSHV revealed that these sequences can be distinguished from the fully complementary sequence. The possibility to distinguish such sequences is of utmost importance in clinical environments, as it allows to identify mutations essential for enzyme function and thus, is crucial for the correct treatment with antibiotics. Taken together, this system provides a robust, label-free, and cost-efficient analytical tool for the detection of nucleic acids and will enable the surveillance of antimicrobial resistance determinants.


Subject(s)
Biosensing Techniques , Nucleic Acids , Surface Plasmon Resonance/methods , Biosensing Techniques/methods , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics
2.
RSC Adv ; 11(31): 19265-19282, 2021 May 24.
Article in English | MEDLINE | ID: mdl-35478657

ABSTRACT

The antimicrobial nature of Antharaea mylitta silk-fibroin (SF) is reported but antioxidant potential and the immunomodulatory role towards the fibroblast cell repair process is not explored. Polyurethane is reported to have inflammatory potential by mononuclear cells directed cytokine release, which can guide fibroblast repair. Present study demonstrates the conjunctive effect of inflammatory PU/SF to regulate the favorable shift from pro-inflammatory to anti-inflammatory cytokine stimulation for accelerated fibroblast repair. Minimal inhibitory concentration of SF was determined against pathogenic strains and the effect of SF was investigated for fibroblast NIH3T3 cell adhesion. SF doses (8, 8.5, 9 mg mL-1) were found to be greater than both the IC50 of DPPH scavenging and the ED50 for NIH3T3 proliferation. Anti-lipid peroxidase (ALP) activity of SF doses and citric acid-treated NIH3T3 cells were compared under hydrogen peroxide (H2O2) induced oxidative stress. 9 mg mL-1 SF showed greater ALP activity than the citric acid standard. SF-driven protection to oxidative damage was measured by viable cell fraction in trypan blue dye exclusion assay where 9 mg mL-1 SF showed the highest viability (p ≤ 0.05). 9 mg mL-1 SF was blended with PU for scaffold (w/v = 2 : 5, 2 : 7, 2 : 9) fabrication. The protective effect of PU/SF (2 : 5, 2 : 7, 2 : 9) against oxidative stress was verified by damaged cell survival in MTT assay and DNA quantification. The highest number of cells survived on PU/SF (2 : 9) at all intervals (p ≤ 0.01) upon oxidative damage; PU/SF (2 : 9) was also fabricated by employing the immobilization technique. Immobilized PU/SF (2 : 9) exhibited a greater zone of microbial inhibition, a higher extent of inhibition to microbial adherence, and caused more LDH release from bacterial cell membrane due to membrane rupture, resulting in bacterial cell death (E. coli, K. pneumoniae, P. aeruginosa, S. aureus) compared to the experimental results shown by blended PU/SF (2 : 9). The protective nature of PU/SF (2 : 9) against oxidative stress was ensured through the LDH activity of damaged NIH3T3 cells. Initial raised IL-6, TNF-alpha (pro-inflammatory cytokines) and lowered IL-8, IL-10 (anti-inflammatory cytokine) profiles coupled with fallen IL-6, TNF-alpha, and elevated IL-8, IL-10 at later hours synergistically progress the inflammatory phase of in vitro scratch wound repair in mononuclear culture treated by PU/SF (2 : 9).

3.
J Biosci ; 43(4): 673-684, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30207313

ABSTRACT

Butterflies and moths possess diverse patterns on their wings. Butterflies employ miscellaneous colour in the wings whereas moths use a combination of dull colours like white, grey, brown and black for the patterning of their wings. The exception is some of the toxic diurnal moths which possess bright wing colouration. Moths possess an obscure pattern in the dorsal part of the wings which may be a line, zigzag or swirl. Such patterns help in camouflage during resting period. Thus, the dorsal wing pattern of the moth is used for both intra- as well as inter-specific signal communication. Chiasmia eleonora is a nocturnal moth of greyish black colouration. The dorsal hindwing possesses yellow and black colour patches. A whitecoloured oblique line crosses both left and right fore- and hindwings to form a V-shaped pattern across the dorsal wing. This V-shaped pattern possesses a UV signal. Closer to the body, the colour appears darker, which fades towards the margin. The fine nanostructural variation is observed throughout the wings. This study elucidates the wing pattern of the geometrid moth C. eleonora using high-resolution microscopy techniques that has not been described in previous studies.


Subject(s)
Butterflies/genetics , Moths/genetics , Pigmentation/genetics , Wings, Animal , Animals , Color
SELECTION OF CITATIONS
SEARCH DETAIL
...