Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 22(1): 238, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33823809

ABSTRACT

BACKGROUND: The behavior of cells in vivo is complex and highly dynamic, as it results from an interplay between intercellular matrix proteins with surface receptors and other microenvironmental cues. Although the effects of the cellular niche have been investigated for a number of cell types using different molecular approaches, comprehensive assessments of how the global transcriptome responds to 3D scaffolds composed of various extracellular matrix (ECM) constituents at different concentrations are still lacking. RESULTS: In this study, we explored the effects of two diverse extracellular matrix (ECM) components, Collagen I and Matrigel, on the transcriptional profile of cells in a cell culture system. Culturing Huh-7 cells on traditional cell culture plates (Control) or on the ECM components at different concentrations to modulate microenvironment properties, we have generated transcriptomics data that may be further explored to understand the differentiation and growth potential of this cell type for the development of 3D cultures. Our analysis infers transcription factors that are most responsible for the transcriptome response to the extracellular cues. CONCLUSION: Our data indicates that the Collagen I substrate induces a robust transcriptional response in the Huh-7 cells, distinct from that induced by Matrigel. Enhanced hepatocyte markers (ALB and miR-122) reveal a potentially robust remodelling towards primary hepatocytes. Our results aid in defining the appropriate culture and transcription pathways while using hepatoma cell lines. As systems mimicking the in vivo structure and function of liver cells are still being developed, our study could potentially circumvent bottlenecks of limited availability of primary hepatocytes for preclinical studies of drug targets.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Carcinoma, Hepatocellular/genetics , Cell Line , Extracellular Matrix , Extracellular Matrix Proteins/genetics , Humans , Liver Neoplasms/genetics , Tumor Microenvironment
2.
EMBO J ; 39(18): e103922, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32812257

ABSTRACT

Translational readthrough, i.e., elongation of polypeptide chains beyond the stop codon, was initially reported for viral RNA, but later found also on eukaryotic transcripts, resulting in proteome diversification and protein-level modulation. Here, we report that AGO1x, an evolutionarily conserved translational readthrough isoform of Argonaute 1, is generated in highly proliferative breast cancer cells, where it curbs accumulation of double-stranded RNAs (dsRNAs) and consequent induction of interferon responses and apoptosis. In contrast to other mammalian Argonaute protein family members with primarily cytoplasmic functions, AGO1x exhibits nuclear localization in the vicinity of nucleoli. We identify AGO1x interaction with the polyribonucleotide nucleotidyltransferase 1 (PNPT1) and show that the depletion of this protein further augments dsRNA accumulation. Our study thus uncovers a novel function of an Argonaute protein in buffering the endogenous dsRNA-induced interferon responses, different than the canonical function of AGO proteins in the miRNA effector pathway. As AGO1x expression is tightly linked to breast cancer cell proliferation, our study thus suggests a new direction for limiting tumor growth.


Subject(s)
Argonaute Proteins/metabolism , Breast Neoplasms/metabolism , Cell Proliferation/drug effects , Eukaryotic Initiation Factors/metabolism , Interferons/metabolism , Neoplasm Proteins/metabolism , RNA, Double-Stranded/pharmacology , Signal Transduction/drug effects , Argonaute Proteins/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Eukaryotic Initiation Factors/genetics , Exoribonucleases/genetics , Exoribonucleases/metabolism , Female , HEK293 Cells , HeLa Cells , Humans , Interferons/genetics , Neoplasm Proteins/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...