Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
Add more filters










Publication year range
2.
Front Neurol ; 15: 1383773, 2024.
Article in English | MEDLINE | ID: mdl-38988603

ABSTRACT

Background: Cross-modality image estimation can be performed using generative adversarial networks (GANs). To date, SPECT image estimation from another medical imaging modality using this technique has not been considered. We evaluate the estimation of SPECT from MRI and PET, and additionally assess the necessity for cross-modality image registration for GAN training. Methods: We estimated interictal SPECT from PET and MRI as a single-channel input, and as a multi-channel input to the GAN. We collected data from 48 individuals with epilepsy and converted them to 3D isotropic images for consistence across the modalities. Training and testing data were prepared in native and template spaces. The Pix2pix framework within the GAN network was adopted. We evaluated the addition of the structural similarity index metric to the loss function in the GAN implementation. Root-mean-square error, structural similarity index, and peak signal-to-noise ratio were used to assess how well SPECT images were able to be synthesised. Results: High quality SPECT images could be synthesised in each case. On average, the use of native space images resulted in a 5.4% percentage improvement in SSIM than the use of images registered to template space. The addition of structural similarity index metric to the GAN loss function did not result in improved synthetic SPECT images. Using PET in either the single channel or dual channel implementation led to the best results, however MRI could produce SPECT images close in quality. Conclusion: Synthesis of SPECT from MRI or PET can potentially reduce the number of scans needed for epilepsy patient evaluation and reduce patient exposure to radiation.

3.
Int J Biol Macromol ; 271(Pt 1): 132368, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761912

ABSTRACT

The structural stability and therapeutic activity of Stem Bromelain (BM) have been explored by unravelling the interaction of stem BM in presence of two different types of anionic surfactants namely, bile salts, NaC and NaDC and the conventional anionic surfactants, SDDS and SDBS, below, at and above the critical micelle concentration (cmc) in aqueous phosphate buffer of pH 7. Different physicochemical parameters like, surface excess (Γcmc), minimum area of surfactants at air water interface (Amin) etc. are calculated from tensiometry both in absence and presence of BM. Several inflection points (C1, C2 and C3) have been found in tensiometry profile of surfactants in presence of BM due to the conformational change of BM assisted by surfactants. Similar observation also found in isothermal titration calorimetry (ITC) profiles where the enthalpy of micellization (ΔH0obs) of surfactants in absence and presence of BM have calculated. Further, steady state absorption and fluorescence spectra monitoring the tryptophan (Trp) emission of free BM and in presence of all the surfactants at three different temperatures (288.15 K, 298.15 K, and 308.15 K) reveal the nature of fluorescence quenching of BM in presence of bile salts/surfactants. Time resolved fluorescence studies at room temperature also support to determine the several quenching parameters. The binding constant (Kb) of BM with all the surfactants and free energy of binding (∆G0 of bile salts/surfactants with BM at different temperatures have been calculated exploiting steady state fluorescence technique. It is observed that, the binding of NaC with BM is greater as compared to other surfactants while Stern-Volmer quenching constant (KSV) is found greater in presence of SDBS as compared with others which supports the surface tension and ITC data with the fact that surface activity of surfactant(s) is decreasing with the binding of the surfactants at the core or binding pocket of BM. Circular Dichroism (CD) study shows the stability of secondary structure of BM in presence of NaC and NaDC below C3, while BM lost its structural stability even at very low surfactant concentration of SDDS and SDBS which also supports the more involvement of bile salts in binding rather than surfactants. The molecular docking studies have also been substantiated for better understanding the several experimental investigations interaction of BM with the bile salts/surfactants.


Subject(s)
Bromelains , Micelles , Molecular Docking Simulation , Surface-Active Agents , Thermodynamics , Bromelains/chemistry , Bromelains/metabolism , Surface-Active Agents/chemistry , Hydrogen-Ion Concentration , Anions/chemistry , Spectrometry, Fluorescence , Buffers
4.
EJNMMI Res ; 14(1): 33, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38558200

ABSTRACT

BACKGROUND: Accurate measurement of the arterial input function (AIF) is crucial for parametric PET studies, but the AIF is commonly derived from invasive arterial blood sampling. It is possible to use an image-derived input function (IDIF) obtained by imaging a large blood pool, but IDIF measurement in PET brain studies performed on standard field of view scanners is challenging due to lack of a large blood pool in the field-of-view. Here we describe a novel automated approach to estimate the AIF from brain images. RESULTS: Total body 18F-FDG PET data from 12 subjects were split into a model adjustment group (n = 6) and a validation group (n = 6). We developed an AIF estimation framework using wavelet-based methods and unsupervised machine learning to distinguish arterial and venous activity curves, compared to the IDIF from the descending aorta. All of the automatically extracted AIFs in the validation group had similar shape to the IDIF derived from the descending aorta IDIF. The average area under the curve error and normalised root mean square error across validation data were - 1.59 ± 2.93% and 0.17 ± 0.07. CONCLUSIONS: Our automated AIF framework accurately estimates the AIF from brain images. It reduces operator-dependence, and could facilitate the clinical adoption of parametric PET.

5.
J Fluoresc ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647961

ABSTRACT

A biphenyl based coumarin fluorescent molecule, N,N'-bis(7-diethylamino-2-oxo-2 H-chromen-3-yl)methylene)biphenyl-2-2'-dicarbohydrazide (molecule 1) has been synthesized and characterised. Photophysical studies of 1 exhibit solvent polarity dependent absorption and emission maxima. Citrate capped gold nanoparticles (AuNPs) have been mixed with molecule 1 for the preparation of AuNPs/1 conjugate. The association constant of the AuNPs/1 conjugate has been calculated to 4.54 × 104 M- 1. The AuNPs/1 conjugate has been found to detect Hg2+ ion selectively by fluorescence enhancement. While addition of molecule 1 into the solution of AuNPs, fluorescence intensity of 1 quenched. On addition of several monovalent, divalent and trivalent metal ion into the solution of AuNPs/1 conjugate separately, there was no change in fluorescence intensity of 1 has been observed. However, upon addition of Hg2+ ion into the solution of AuNPs/1 conjugate, the fluorescence intensity enhancement occurred, indicating released of 1 from the surface of AuNPs and probably aggregation of AuNPs took place in presence of Hg2+ ion. The AuNPs/1 conjugate has been found to have a detection limit of 2.3 × 10- 9 M for Hg2+ ion in aqueous solvent. Meanwhile, the AuNPs/1 conjugate have also been successfully applied for the determination of Hg2+ in real water samples.

6.
Phys Chem Chem Phys ; 26(11): 8900-8918, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38426553

ABSTRACT

Advanced spectroscopic techniques have been utilized to study the interaction between the laser dye coumarin 153 (C153) and graphene oxide (GO) nanoparticles. GO was synthesized using a modified Hummers' method and characterized by UV-vis spectroscopy, Raman laser spectroscopy, FTIR-ATR spectroscopy, FESEM, HR-TEM, and XRD techniques. The GO@C153 composite was formed by mixing two aqueous solutions of GO and C153 due to their strong interaction through stacking and hydrophobic interactions. In this case, GO acts as an effective fluorescence quencher for C153 molecules, which undergo H-type aggregation in the presence of GO. The Stern-Volmer equation and time-dependent fluorescence studies were utilized to analyse the mechanism of fluorescence quenching. According to the findings, both static and dynamic quenching processes are responsible for the reduction in fluorescence intensity. The effect of surfactants (both cetyltrimethylammonium p-toluenesulfonate (CTAT) and synthesized N,N'-dihexadecyl-N,N,N',N'-tetramethyl-N,N'-but-2-ynediyl-di-ammonium chloride (16-4-16)) on the aggregation and photophysical properties of the dye was investigated using surface tensiometry, conductometry, UV-vis absorption spectroscopy, steady-state fluorescence measurements, DLS, and time-dependent fluorescence spectroscopy. Surfactants change the microenvironment of the C153 dye, leading to spectrum shifting and a higher quantum yield, which causes a rapid rise in fluorescence intensity in the micellar medium. It has been noted that in a micellar medium rather than in an aqueous one, the luminous intramolecular charge transfer (ICT) state of C153 stabilises. Lastly, we investigated the photophysical behavior of the GO-C153-micelle ternary system and discovered that, in the presence of a micellar medium, the quenched and blue-shifted (H-type aggregation) fluorescence peak of C153 (in the presence of GO) began to intensify once more. The main goal of this work is to create an effective and fairly cost powerful fluorescence sensor. Additionally, the ternary system (GO-C153-micelle) analytical idea can be employed to identify the onset of micelle formation. In wastewater treatment analysis, the GO-C153-surfactant ternary system concept can also be used to regenerate the adsorbent (in this case, GO) from dye molecules by allowing the dye molecules to exit the adsorbent and enter the micellar medium.

7.
Protein J ; 43(2): 259-273, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38492188

ABSTRACT

The paper introduces a novel probability descriptor for genome sequence comparison, employing a generalized form of Jensen-Shannon divergence. This divergence metric stems from a one-parameter family, comprising fractions up to a maximum value of half. Utilizing this metric as a distance measure, a distance matrix is computed for the new probability descriptor, shaping Phylogenetic trees via the neighbor-joining method. Initial exploration involves setting the parameter at half for various species. Assessing the impact of parameter variation, trees drawn at different parameter values (half, one-fourth, one-eighth). However, measurement scales decrease with parameter value increments, with higher similarity accuracy corresponding to lower scale values. Ultimately, the highest accuracy aligns with the maximum parameter value of half. Comparative analyses against previous methods, evaluating via Symmetric Distance (SD) values and rationalized perception, consistently favor the present approach's results. Notably, outcomes at the maximum parameter value exhibit the most accuracy, validating the method's efficacy against earlier approaches.


Subject(s)
Phylogeny , Genome , Algorithms , Sequence Alignment/methods , Genomics/methods
8.
J Biomol Struct Dyn ; : 1-7, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38375605

ABSTRACT

In the present work, a new form of descriptor using minimal moment vector (MMV) is introduced to compare protein sequences in the frequency domain under their component wise binary representations. From every sequence, 20 different binary component sequences are formed, each corresponding to 20 amino acids. Each such vector is now shifted from the time domain to the frequency domain by applying the Fast Fourier Transform (FFT). Next, the power spectrum calculated from the FFT values for each component sequence is so normalized that the sum of the components equals 1. The descriptor is defined as a 20-component vector composed of the 20 second-order minimal moments calculated from the normalized spectrum of the 20 component sequences. Once the descriptor is known, the distance matrix is created by applying the Euclidean Distance measure. The phylogenetic tree is generated by applying the unweighted pair group method with the arithmetic mean (UPGMA) algorithm using Molecular Evolutionary Genetics Analysis11 (MEGA11) software. In this work, the datasets used for similarity studies are 9 NADH dehydrogenase 5 (ND5), 12 Baculoviruses, 24 Transferrins (TF) proteins, and 50 Spike Protein of coronavirus. A qualitative measure using rationalized perception is used to compare the effectiveness of the proposed method. Quantitative measure based on symmetric distance (SD) is used to compare the phylogenetic trees of the present method with those obtained by other methods. It is observed that the phylogenetic trees generated by the proposed technique are at par with their known biological references, and they produce results better than those of the earlier methods.Communicated by Ramaswamy H. Sarma.

9.
Protein J ; 43(1): 1-11, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37848727

ABSTRACT

Protein sequence comparison remains a challenging work for the researchers owing to the computational complexity due to the presence of 20 amino acids compared with only four nucleotides in Genome sequences. Further, protein sequences of different species are of different lengths; it throws additional changes to the researchers to develop methods, specially alignment-free methods, to compare protein sequences. In this work, an efficient technique to compare protein sequences is developed by a graphical representation. First, the classified grouping of 20 amino acids with a cardinality of 4 based on polar class is considered to narrow down the representational range from 20 to 4. Then a unit vector technique based on a two-quadrant Cartesian system is proposed to provide a new two-dimensional graphical representation of the protein sequence. Now, two approaches are proposed to cope with the varying lengths of protein sequences from various species: one uses Dynamic Time Warping (DTW), while the other one uses a two-dimensional Fast Fourier Transform (2D FFT). Next, the effectiveness of these two techniques is analyzed using two evaluation criteria-quantitative measures based on symmetric distance (SD) and computational speed. An analysis is performed on five data sets of 9 ND4, 9 ND5, 9 ND6, 12 Baculovirus, and 24 TF proteins under the two methods. It is found that the FFT-based method produces the same results as DTW but in less computational time. It is found that the result of the proposed method agrees with the known biological reference. Further, the present method produces better clustering than the existing ones.


Subject(s)
Amino Acids , Proteins , Amino Acid Sequence , Proteins/genetics , Proteins/chemistry , Algorithms
10.
Soft Matter ; 20(1): 79-88, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37999681

ABSTRACT

In this work, the preparation of a pH-responsive fluorescent microgel, (NANO-PAMAM-CHT), is presented for the selective detection of Cu2+ and Cr2O72- ions. The NANO-PAMAM-CHT (nanosized polyaminoamide-chitosan microgel) is synthesized via aza-Michael addition reactions in a controlled and stepwise manner in water, using easily affordable starting materials like 1,4-diaminobutane, N,N'-methylene-bis-acrylamide, NIPAM and chitosan. NANO-PAMAM-CHT shows pH-responsive fluorescent properties, whereas the fluorescence intensity shows a pH-responsive change. Due to the selective fluorescence quenching, the microgel can detect both Cu2+ ions and Cr2O72- ions selectively at ambient pH in aqueous medium. Moreover, it can selectively differentiate between Cu2+ ion and Cr2O72- ions at pH ∼3 in water. The limits of detection for Cu2+ ions and Cr2O72- ions are reported as 16.9 µM and 2.62 µM, respectively (lower than the minimum allowed level in drinking water) at pH ∼7. Mechanistic study further reveals the dynamic quenching phenomenon in the presence of Cu2+ ions and static quenching in the presence of Cr2O72- ions.

11.
Int J Biol Macromol ; 253(Pt 7): 127282, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37827413

ABSTRACT

In the present manuscript, an amphiphile sulphonamide based surfactant benzenesulphonyl-11-amino sodium undecanoate (BASU) is designed and synthesized. The surface activity of the amphiphile in the solutions is studied at neutral pH so that the resulting amphiphile self-organizes and transfers from large unilamellar vesicles to small micelles from dilute to concentrated solutions. During the aggregate transitions, the common surfactants tend to form the small aggregate at low concentrations; but BASU shows the large vesicle structure at low concentration of ~3 mM and converts into the small micelle at ~9 mM. Therefore, different techniques have been used, such as, tensiometry, conductometry, fluorimetry and DLS and some microscopic characterization, e.g., confocal fluorescence microscopy to reveal the aggregate assembly and transition mechanism. The isothermal titration calorimetry is used for quantitative measurement of thermodynamic properties of self-assembly formation and the process is found spontaneous and entropically favorable. The permeability of the vesicle membrane bilayer is explored by a kinetic study. Effects of salt and cholesterol on the aggregate of respective amphiphile are also investigated. The interaction of surfactant with both human and bovine serum albumin is analyzed through UV-visible and fluorescence techniques to draw a comparative study. Antibacterial activity is tested by both spectral and zone inhibition methods and its application for mixed amphiphiles (e.g., BASU/CTAB) is found. Therefore, according to the ability of formation of unilamellar vesicles (ULV) and its stability, permeability and antibacterial activity, the amphiphile can have potential applications in the medicinal field.


Subject(s)
Amino Acids , Micelles , Humans , Unilamellar Liposomes , Surface-Active Agents/chemistry , Sulfanilamide , Anti-Bacterial Agents
12.
Soft Matter ; 19(41): 7995-8010, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37819269

ABSTRACT

The formation of aggregates, which are widely used in the field of biochemistry and the medical industry, was studied with different compositions of alkyl betaine gemini surfactant (C14Ab) in conjugation with chlorpromazine hydrochloride (CPZ). The results were compared with those of a single-chain zwitterionic surfactant (C12DmCB) of the same type with CPZ. Dynamic light scattering (DLS), confocal laser scanning microscopy (CLSM), and transmission electron microscopy (TEM) methods were used to distinguish the aggregates for the CPZ/C14Ab system in aqueous solutions above a certain mole fraction of the drug CPZ (αCPZ = 0.2). Time-resolved fluorescence decay measurements of acridine orange revealed relative polarity near the head group regions of mixed micelle (CPZ/C14Ab and CPZ/C12DmCB) systems. The hydrophilic environment around the head group regions of the CPZ/C14Ab system was different from that in the case of the CPZ/C12DmCB system. On the other hand, several theoretical models were employed (Clint, Rubingh, Motomura, and SPB) for mixed micellar systems to elucidate the different interaction parameters. Such a systematic study of a zwitterionic gemini amphiphile and its interaction with other amphiphiles and an amphiphilic drug molecule is rare in the literature.


Subject(s)
Antipsychotic Agents , Surface-Active Agents , Surface-Active Agents/chemistry , Antipsychotic Agents/chemistry , Chlorpromazine/chemistry , Water/chemistry , Chemical Phenomena
13.
J Biomol Struct Dyn ; : 1-15, 2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37837426

ABSTRACT

Numerous techniques are used to compare protein sequences based on the values of the physiochemical properties of amino acids. In this work, a single physical/chemical property value based non-binary representation of protein sequences is obtained on a 20 × 20-dimensional unit hypercube. The represented vector expressed in the matrix form is taken as the descriptor. The generalized NTV metric, which is an extension of the NTV metric used for polynucleotide space is taken as a distance measure. Based on this distance measure, a distance matrix is obtained for protein sequence comparison. Using this distance matrix, phylogenetic trees are drawn by using Molecular Evolutionary Genetics Analysis 11 (MEGA11) software applying the neighbor-joining method. Data sets used in this current work are 9-ND4, 9-ND5, 9-ND6, 24 TF-LF proteins, 27 different viruses and 127 proteins from the protein kinase C (PKC) family. Two sets of phylogenetic trees are obtained - one based on property value of polarity and the other based on property value of molecular weight. They are found to be exactly the same. Similar results also hold for other single property value based representation. The present trees are individually tested for efficiency based on the criterion of rationalized perception and computational time. The results of the present method are compared with those obtained earlier by other methods on the same protein sequences using assessment criteria of Symmetric distance (SD), Correlation coefficient, and Rationalized perception. In all the cases, the present results are found to be better than the results of other methods under comparison.Communicated by Ramaswamy H. Sarma.

14.
J Am Chem Soc ; 145(22): 12224-12232, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37224263

ABSTRACT

Photoinduced enhancement of hydricity of palladium hydride species enables unprecedented hydride addition-like ("hydridic") hydropalladation of electron-deficient alkenes, which allows for chemoselective head-to-tail cross-hydroalkenylation of electron-deficient and electron-rich alkenes. This mild and general protocol works with a wide range of densely functionalized and complex alkenes. Notably, this approach also allows for highly challenging cross-dimerization of electronically diverse vinyl arenes and heteroarenes.

15.
J Phys Chem Lett ; 14(22): 5203-5209, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37257001

ABSTRACT

The prediction of X-ray absorption spectra (XAS) of transition metal complexes has important and broad application areas in chemistry and biology. In this letter, we have investigated the predictive ability of multiconfiguration pair-density functional theory (MC-PDFT) for X-ray absorption spectra by calculating the metal K pre-edge features of aquated 3d transition metal ions in common oxidation states. MC-PDFT results were compared with experimentally measured spectra as well as analyzed against results from restricted active-space second-order perturbation theory (RASPT2) and time-dependent density functional theory (TDDFT). As expected, TDDFT performs well for excited states that can be accurately represented by singly excited configurations but fails for excited states where higher order excitations become important. On the other hand, both RASPT2 and MC-PDFT provide quantitatively accurate results for all excited states irrespective of their character. While core-level spectroscopy with RASPT2 is accurate, it is computationally expensive. Our results show that MC-PDFT performs equally well with significantly lower computational cost and is an encouraging alternate approach for X-ray spectroscopies.

16.
Langmuir ; 39(7): 2850-2858, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36758211

ABSTRACT

Polymer/surfactant composites are used in industry as an excipient for water-insoluble solutes. Such enhanced dissolution ability of composite media is related to the spontaneous formation of pre-micellar polymer surfactant aggregates (PS) at a magnitude of order lower than the surfactant critical micelle concentration in water. Combining electrochemical and spectroscopic studies, we investigate the microscopic interfacial structure (i.e., interface electrostatics and surface polarity) of PS formed in composite media. We establish that in a composite system, a mere change in the polymer concentration at a fixed surfactant concentration makes possible to regulate the counter-ion binding ability, surface potential, surface charge density, packing and surface polarity of the PS interface. Our study shows that the higher dissolution of water-insoluble nonionic solutes in composite media is driven by the depressing of surface charge density and polarity of the PS interface. A similar modulation of the PS interface acts as a barrier for the passive relocation of water-soluble charged solutes into the PS pseudo-phase. The time-resolved fluorescence anisotropy study allows us to underline the effect of surface charge modulation on the dynamical aspects of solutes at the PS interface.

17.
Nat Hazards (Dordr) ; 116(3): 3857-3878, 2023.
Article in English | MEDLINE | ID: mdl-36817633

ABSTRACT

Indian Sundarban is highly susceptible to tropical cyclones and resultant impacts such as storm surge-induced floods, embankment breaching, and saline water intrusion. It affects life and livelihood in severe ways. Mitigation and policy measures are therefore very important, based on information gathered at the grassroots level. Hence, this study is designed to assess inter-village variation in cyclone vulnerability, considering physical vulnerability, social vulnerability, and mitigation capacity. This study also highlights livelihood challenges faced by coastal dwellers. Geospatial and quantitative methods were used to assess the composite vulnerability index (CVI). Remote sensing data and climatic data were integrated to assess physical vulnerability and various socioeconomic data were incorporated to determine the social vulnerability. Moreover, an intensive field survey (2020-2021) was also conducted to understand the livelihood challenges of local people and accordingly suggest mitigation measures to cope with natural hazards. According to this analysis, nearly 18% of the total population living in the southern and eastern parts of the Matla-Bidya inter-estuarine area (MBI) are extremely vulnerable (CVI > 0.544) due to their geographical location and high exposure to coastal hazards. Almost 51% of the total populations inhabited in 46% of the total MBI villages are experiencing high to moderate vulnerability. Conversely, MBI villages in the northern part, where 32% of the total population lives, show low vulnerability (CVI < 0.387) due to less exposure and high resilience. Coastal low-lying villages are often hardest hit by tropical cyclones. Therefore, effective mitigation strategies and coping mechanisms are essentially needed to reduce the adverse impacts of cyclones.

18.
Chemistry ; 29(12): e202203428, 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36445786

ABSTRACT

Selective defluorinative functionalization of trifluoromethyl ketones is a long-standing challenge owing to the exhaustive mode of the process. To meet the demands for the installation of the gem-difluoromethylene unit for the construction of the molecular architectures of well-known pharmaceuticals and agrochemicals, a distinct pathway is thereby highly desirable. Here, a protocol is introduced that allows the divergent synthesis of gem-difluoromethylene group containing tetrahydrofuran derivatives and linear ketones via single C-F bond activation of trifluoromethyl ketones using visible-light photoredox catalysis in the presence of suitable olefins as trapping partner. The choice of appropriate solvent and catalyst plays a significant role in controlling the divergent behavior of this protocol. Highly reducing photo-excited catalysts are found to be responsible for the generation of α,α-difluoromethyl ketone (DFMK) radicals as the key intermediate via a SET process. This protocol also results in a high diastereoselectivity towards the formation of partially fluorinated cyclic ketal derivatives with simultaneous construction of one C-C and two C-O bonds. State-of-the-art DFT calculations are performed to address the origin of diastereoselectivity as well as the divergence of this protocol.

19.
ACS Omega ; 7(43): 39446-39455, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36340165

ABSTRACT

The difficult aspect of developing new protein sequence comparison techniques is coming up with a method that can quickly and effectively handle huge data sets of various lengths in a timely manner. In this work, we first obtain two numerical representations of protein sequences separately based on one physical property and one chemical property of amino acids. The lengths of all the sequences under comparison are made equal by appending the required number of zeroes. Then, fast Fourier transform is applied to this numerical time series to obtain the corresponding spectrum. Next, the spectrum values are reduced by the standard inter coefficient difference method. Finally, the corresponding normalized values of the reduced spectrum are selected as the descriptors for protein sequence comparison. Using these descriptors, the distance matrices are obtained using Euclidian distance. They are subsequently used to draw the phylogenetic trees using the UPGMA algorithm. Phylogenetic trees are first constructed for 9 ND4, 9 ND5, and 9 ND6 proteins using the polarity value as the chemical property and the molecular weight as the physical property. They are compared, and it is seen that polarity is a better choice than molecular weight in protein sequence comparison. Next, using the polarity property, phylogenetic trees are obtained for 12 baculovirus and 24 transferrin proteins. The results are compared with those obtained earlier on the identical sequences by other methods. Three assessment criteria are considered for comparison of the results-quality based on rationalized perception, quantitative measures based on symmetric distance, and computational speed. In all the cases, the results are found to be more satisfactory.

20.
Chem Commun (Camb) ; 58(92): 12807-12810, 2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36301200

ABSTRACT

A reactive stimuli responsive fluorescent polyaminoamide nanogel (NANO-PAMAM) is synthesized via an aza-Michael polyaddition reaction in water. In the next stage, doxorubicin (a FRET acceptor) is covalently linked with the nanogel (NANO-PAMAM, a nonconventional FRET donor) to form a ratiometric nanosensor for temperature and pH sensing. MTT assay revealed comparable biocompatibility of the donor nanogels (NANO-PAMAM) and nanosensors (NANO-PAMAM-DOX).


Subject(s)
Doxorubicin , Polyethyleneimine , Nanogels , Temperature , Hydrogen-Ion Concentration , Doxorubicin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...