Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Interferon Cytokine Res ; 37(8): 369-382, 2017 08.
Article in English | MEDLINE | ID: mdl-28727946

ABSTRACT

Genome-wide association studies discovered interferon lambda (IFNL or IFN-λ) locus on chromosome 19 to be involved in clearance of chronic hepatitis C virus (HCV) infection in patients following interferon-α-ribavirin (IFN-RBV) therapy. Subsequent studies established a dinucleotide polymorphism rs368234815, as the prime causal variant behind this association. The ΔG allele of this variant gives rise to a new IFNL gene, IFNL4, coding for IFN-λ4 whose activity paradoxically associates with lesser viral clearance rates. A low-frequency, nonsynonymous single nucleotide polymorphism (SNP) rs117648444 within the 2nd exon of IFNL4 changes the 70th amino acid from proline to serine resulting in lower activity of the functional IFN-λ4 protein, thereby increasing HCV clearance rates. In the present study, we used a cohort of genotype 3 HCV-infected patients, drawn from different geographical regions of India who underwent IFN-RBV therapy, to examine the association of several important IFNL locus SNPs/variants with sustained virological response (SVR). Intriguingly, the causal variant rs368234815 did not show the best strength and significance of association with SVR, while further analysis revealed that a negative confounding effect of rs117648444 was responsible for this phenomenon. Our results indicate that IFNL locus SNPs are subject to either a positive or a negative confounding effect by rs117648444; the nature of confounding depends on the linkage of the IFNL SNPs with the low-activity IFN-λ4-generating minor allele of rs117648444. Thus, our work demonstrates that the linkage disequilibrium structure of the IFNL region may confound the results of association studies. These results have implications for the design and understanding of future case-control studies involving IFNL locus SNPs/variants.


Subject(s)
Hepacivirus/genetics , Hepatitis C, Chronic/drug therapy , Hepatitis C, Chronic/genetics , Interferon-alpha/therapeutic use , Interleukins/genetics , Polymorphism, Single Nucleotide/genetics , Ribavirin/therapeutic use , Alleles , Cohort Studies , Female , Genome-Wide Association Study , Genotype , Haplotypes/genetics , Humans , Interferons , Linkage Disequilibrium/genetics , Male , Promoter Regions, Genetic/genetics , Sustained Virologic Response
2.
Viral Immunol ; 29(1): 49-63, 2016.
Article in English | MEDLINE | ID: mdl-26684959

ABSTRACT

The expression of a biologically active human IFNλ4 depends on the presence of a frameshift deletion polymorphism within the first exon of the interferon lambda 4 (IFNL4) gene. In this report, we use the lung carcinoma-derived cell line, A549, which is genetically viable to express a functional IFNλ4, to address transcriptional requirements of the IFNL4 gene. We show that the GC-rich DNA-binding transcription factor (TF) specificity protein 1 (Sp1) is recruited to the IFNL4 promoter and has a role in induction of gene expression upon stimulation with viral RNA mimic poly(I:C). By using RNAi and overexpression strategies, we also show key roles in IFNL4 gene expression for the virus-inducible TFs, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), IFN regulatory factor 3 (IRF3), and IRF7. Interestingly, we also observe that overexpression of IFNλ4 influences IFNL4 promoter activity, which may further be dependent on the retinoic acid-inducible gene-I (RIG-I)-like receptor pathway. Together, our work for the first time reports on the functional characterization of the human IFNL4 promoter.


Subject(s)
Gene Expression Regulation/genetics , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-7/genetics , Interleukins/biosynthesis , NF-kappa B p50 Subunit/genetics , Sp1 Transcription Factor/genetics , Transcription Factor RelA/genetics , Base Sequence , Binding Sites/genetics , Cell Line, Tumor , HEK293 Cells , Humans , Interleukins/genetics , Molecular Sequence Data , Poly I-C/pharmacology , Promoter Regions, Genetic/genetics , Protein Binding/genetics , RNA Interference , RNA, Small Interfering/genetics , Receptors, Retinoic Acid/genetics
3.
Gastroenterology ; 139(2): 644-52, 652.e1, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20381490

ABSTRACT

BACKGROUND & AIMS: The carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is a transmembrane glycoprotein with pleotropic functions, including clearance of hepatic insulin. We investigated the functions of the related protein CEACAM2, which has tissue-specific distribution (kidney, uterus, and crypt epithelia of intestinal tissues), in genetically modified mice. METHODS: Ceacam2-null mice (Cc2-/-) were generated from a 129/SvxC57BL/6J background. Female mice were assessed by hyperinsulinemic-euglycemic clamp analysis and indirect calorimetry and body fat composition was measured. Cc2-/- mice and controls were fed as pairs, given insulin tolerance tests, and phenotypically characterized. RESULTS: Female, but not male Cc2-/- mice exhibited obesity that resulted from hyperphagia and reduced energy expenditure. Pair feeding experiments showed that hyperphagia led to peripheral insulin resistance. Insulin action was normal in liver but compromised in skeletal muscle of female Cc2-/- mice; the mice had incomplete fatty acid oxidation and impaired glucose uptake and disposal. The mechanism of hyperphagia in Cc2-/- mice is not clear, but appears to result partly from increased hyperinsulinemia-induced hypothalamic fatty acid synthase levels and activity. Hyperinsulinemia was caused by increased insulin secretion. CONCLUSIONS: In mice, CEACAM2 is expressed by the hypothalamus. Cc2-/- mice develop obesity from hyperphagia and reduced energy expenditure, indicating its role in regulating energy balance and insulin sensitivity.


Subject(s)
Energy Metabolism , Glycoproteins/metabolism , Hyperinsulinism/metabolism , Hyperphagia/metabolism , Hypothalamus/metabolism , Insulin/blood , Obesity/metabolism , Age Factors , Animals , Blood Glucose/metabolism , Body Composition , Calorimetry, Indirect , Cell Adhesion Molecules , Fatty Acid Synthase, Type I/metabolism , Fatty Acids/metabolism , Feeding Behavior , Female , Genotype , Glucose Clamp Technique , Glycoproteins/deficiency , Glycoproteins/genetics , Homeostasis , Hyperinsulinism/genetics , Hyperinsulinism/physiopathology , Hyperphagia/genetics , Hyperphagia/physiopathology , Hypothalamus/physiopathology , Insulin Resistance , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle, Skeletal/metabolism , Obesity/genetics , Obesity/physiopathology , Oxidation-Reduction , Phenotype , Sex Factors
4.
Hepat Med ; 2010(2): 69-78, 2010 May.
Article in English | MEDLINE | ID: mdl-21949477

ABSTRACT

Transgenic liver-specific inactivation of the carcinoembryonic antigen-related cell adhesion molecule (CEACAM1) impairs hepatic insulin clearance and causes hyperinsuline-mia, insulin resistance, elevation in hepatic and serum triglyceride levels, and visceral obesity. It also predisposes to nonalchoholic steatohepatitis (NASH) in response to a high-fat diet. To discern whether this phenotype reflects a physiological function of CEACAM1 rather than the effect of the dominant-negative transgene, we investigated whether Ceacam1 (gene encoding CEACAM1 protein) null mice with impaired insulin clearance also develop a NASH-like phenotype on a prolonged high-fat diet. Three-month-old male null and wild-type mice were fed a high-fat diet for 3 months and their NASH phenotype was examined. While high-fat feeding elevated hepatic triglyceride content in both strains of mice, it exacerbated macrosteatosis and caused NASH-characteristic fibrogenic changes and inflammatory responses more intensely in the null mouse. This demonstrates that CEACAM1-dependent insulin clearance pathways are linked with NASH pathogenesis.

5.
Mol Cell Biochem ; 281(1-2): 197-209, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16328973

ABSTRACT

Edible berry extracts rich in anthocyanins possess a broad spectrum of therapeutic, pharmacologic and anti-carcinogenic properties. Six berry extracts (wild blueberry, bilberry, cranberry, elderberry, raspberry seeds and strawberry), singly and in combination, were studied in our laboratories for antioxidant efficacy, cytotoxic potential, cellular uptake and anti-angiogenic properties. Combinations of edible berry extracts were evaluated to develop a synergistic formula, OptiBerry, which exhibited high oxygen radical absorbance capacity (ORAC) value, low cytotoxicity and superior anti-angiogenic properties compared to the other combinations tested. The current study sought to determine the broad spectrum safety and antioxidant potential of OptiBerry in vivo. Acute oral LD(50) of OptiBerry was greater than 5 g/kg in rats. Acute dermal LD(50) of OptiBerry was greater than 2 g/kg. No changes in the body weight or adverse effects were observed following necropsy. Primary skin and eye irritation studies were conducted in New Zealand albino rabbits. OptiBerry was classified as slightly irritating to the skin (primary skin irritation index 0.3) and minimally irritating to the eye (maximum mean total score 6.0). The antioxidant potential of OptiBerry was investigated in rats and mice by assessing GSH redox status in tissues as well as by a unique state-of-the-art electron paramagnetic resonance (EPR) imaging of whole-body redox status. A clinically relevant hyperbaric oxygen (HBO) exposure system (2 atm, 2 h) was employed to study the antioxidant properties of OptiBerry. OptiBerry feeding (8 weeks) significantly prevented HBO-induced GSH oxidation in the lung and liver of vitamin E-deficient Sprague Dawley rats. Furthermore, OptiBerry-fed mice, when exposed to HBO, demonstrated significant protection in whole-body HBO-induced oxidation compared to the unfed controls by EPR imaging. Taken together, these results indicate that OptiBerry is reasonably safe and possess antioxidant properties.


Subject(s)
Anthocyanins/physiology , Anthocyanins/toxicity , Antioxidants/physiology , Antioxidants/toxicity , Fruit/physiology , Fruit/toxicity , Animals , Electron Spin Resonance Spectroscopy , Eye/drug effects , Eye/metabolism , Female , Irritants/toxicity , Male , Oxidation-Reduction/drug effects , Rabbits , Rats , Rats, Sprague-Dawley , Skin/drug effects , Skin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...