Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Lett ; 585: 216662, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38309614

ABSTRACT

Maintaining cellular homeostasis relies on the interplay between apoptosis and autophagy, and disruption in either of these processes can contribute to the development of cancer. Autophagy can hinder the apoptotic process, and when autophagy is inhibited in such instances, it can enhance the rate of apoptosis. However, evidence suggests that excessive autophagy can also lead to apoptotic cell death. Also, excess autophagy can cause excessive digestion of cellular organelles, causing autophagic cell death. Targeting autophagy in non-small cell lung cancer (NSCLC), the most common form of lung cancer, can be very tricky due to the dual nature of autophagy. According to genetic analysis, various mutations in p53 and EGFR, G:C to A:T transversions seem responsible for the development of lung cancer in smokers and non-smokers. These events trigger cytoprotective autophagy or induce apoptotic cell death through different but interconnected signalling pathways. Lung cancer being the leading cause of death worldwide, calls for more attention to disease prognosis and new therapeutics in the market. However, molecules responsible for autophagy to apoptosis transition are yet to be studied elaborately. Also, the role of effector caspases during this shift needs to be elucidated in future. To comprehend how therapeutics operate through the modulation of autophagy and apoptosis and to target such pathways, it is crucial to emphasize these intricate connections. Many therapeutics discussed in this review targeting both apoptosis and autophagy have shown promising results in vitro and in vivo, however, few have crossed the hurdles of clinical trial. Nevertheless, the quest for safer and better efficacious agents is still alive, with the sole aim to develop novel cancer chemotherapeutic(s).


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Apoptosis/genetics , Signal Transduction , Autophagy/genetics , Cell Line, Tumor
2.
Curr Drug Deliv ; 20(10): 1441-1464, 2023.
Article in English | MEDLINE | ID: mdl-36200202

ABSTRACT

COVID-19 pandemic is the biggest global crisis. The frequent mutations in coronavirus to generate new mutants are of major concern. The pathophysiology of SARS-CoV-2 infection has been well studied to find suitable molecular targets and candidate drugs for effective treatment. FDArecommended etiotropic therapies are currently followed along with mass vaccination. The drug delivery system and the route of administration have a great role in enhancing the efficacy of therapeutic agents and vaccines. Since COVID-19 primarily infects the lungs in the affected individuals, pulmonary administration may be the best possible route for the treatment of COVID-19. Liposomes, solid lipid nanoparticles, polymeric nanoparticles, porous microsphere, dendrimers, and nanoparticles encapsulated microparticles are the most suitable drug delivery systems for targeted drug delivery. The solubility, permeability, chemical stability, and biodegradability of drug molecules are the key factors for the right selection of suitable nanocarriers. The application of nanotechnology has been instrumental in the successful development of mRNA, DNA and subunit vaccines, as well as the delivery of COVID-19 therapeutic agents.


Subject(s)
COVID-19 , Humans , Pandemics/prevention & control , SARS-CoV-2 , Drug Delivery Systems , COVID-19 Vaccines
SELECTION OF CITATIONS
SEARCH DETAIL
...