Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Soft Matter ; 19(41): 8011-8021, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37823368

ABSTRACT

The linear stability of two-layer channel flows in the presence of bulk-soluble surfactants is investigated here, taking into account the rheological properties of the interface. The interfacial stresses are quantified using the Boussinesq-Scriven model, while the surfactant kinetics is assumed to follow the Frumkin isotherm, which accounts for their non-ideal behavior. Our results show that in general, the bulk solubility of surfactants has a stabilizing effect on the interface, both with and without the presence of inertia. On the other hand, the interfacial viscosities play a more complex role, depending on the viscosity ratios of the two fluids, the thickness of the fluid layers, the strength of the surface tension gradients, and the extent of inertia. We show that depending on the strength of inertia and the variability in the surface tension, the interfacial rheology may either stabilize or destabilize the base flow. However, for sufficiently small Reynolds numbers, the surface viscosity always has a stabilizing influence. Our results may be used to better design stable co-flow systems with applications in various processes such as surface coating, preparation of fluid lenses, as well as in a host of multi-purpose microfluidic devices.

2.
J R Soc Interface ; 19(189): 20210876, 2022 04.
Article in English | MEDLINE | ID: mdl-35382577

ABSTRACT

Controlled microscale transport is at the core of many scientific and technological advancements, including medical diagnostics, separation of biomolecules, etc., and often involves complex fluids. One of the challenges in this regard is to actuate flows at small scales in an energy efficient manner, given the strong viscous forces opposing fluid motion. We try to address this issue here by probing a combined time-periodic pressure and electrokinetically driven flow of a viscoelastic fluid obeying the simplified linear Phan-Thien-Tanner model, using numerical as well as asymptotic tools, in view of the fact that oscillatory fields are less energy intensive. We establish that the interplay between oscillatory electrical and mechanical forces can lead to complex temporal mass flow rate variations with short-term bursts and peaks in the flow rate. We further demonstrate that an oscillatory pressure gradient or an electric field, in tandem with another steady actuating force can indeed change the net throughput significantly-a paradigm that is not realized in Newtonian or other simpler polymeric liquids. Our results reveal that the extent of augmentation in the flow rate strongly depends on the frequency of the imposed actuating forces along with their waveforms. We also evaluate the streaming potential resulting from an oscillatory pressure-driven flow and illustrate that akin to the volume throughput, the streaming potential also shows complex temporal variations, while its time average gets augmented in the presence of a time-periodic pressure gradient in a nonlinear viscoelastic medium.


Subject(s)
Electricity , Mechanical Phenomena , Pulsatile Flow , Viscosity
3.
Soft Matter ; 17(38): 8712-8729, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34522922

ABSTRACT

The flow of polymeric liquids in narrow confinements with a rectangular cross section, in the presence of electrical double layers is analyzed here. Our analysis is motivated by the fact that many of the previous studies on the flow of complex fluids tend to focus on highly idealized parallel plate channels, which are markedly different from the rectangular ducts, used in many experiments and devices. We consider the combined electroosmotic and pressure driven flows as well as the streaming potential resulting from a mechanically driven flow. We use two distinct constitutive relations to model the polymeric liquids, namely the simplified exponential Phan-Thien-Tanner (sePTT) model and the Giesekus model, both of which are non-linear viscoelastic models, capable of capturing the shear thinning behavior. We establish that the applied electric field may have a strong influence on the overall flow rate, which rapidly increases with the field strength as well as the extent of viscoelasticity of the fluid. Viscoelasticity and shear thinning behavior also enhance the streaming potential by several fold as compared to a Newtonian medium. We demonstrate that the aspect ratio of a channel has a bigger influence on the net throughput and the streaming potential, when the extent of viscoelasticity is relatively large. We illustrate that for sePTT fluids, the flow is strictly unidirectional, while for Giesekus fluids, secondary flows are inevitably present on account of their non-zero second normal stress coefficient. Although the electric field does not change the overall patterns of these secondary flows, their magnitude does depend on the imposed field strength for combined flows.

4.
Electrophoresis ; 38(5): 712-719, 2017 03.
Article in English | MEDLINE | ID: mdl-27982444

ABSTRACT

We study the effects of solvent-mediated nonelectrostatic ion-ion interactions on electrophoretic mobility of a charged spherical particle. To this end, we consider the case of low surface electrostatic potential resulting in the linearization of the governing equations, which enables us to deduce a closed-form analytical solution to the electrophoretic mobility. We subsequently compare our results to the standard model using Henry's approach and report the changes brought about by the nonelectrostatic potential. The classical approach to determine the electrophoretic mobility underpredicts the particle velocity when compared with experiments. We show that this issue can be resolved by taking into account nonelectrostatic interactions. Our analysis further reveals the phenomenon of electrophoretic mobility reversal that has been experimentally observed in numerous previous studies.


Subject(s)
Electrophoresis/methods , Ions/chemistry , Models, Theoretical , Solvents/chemistry , Osmolar Concentration , Particle Size , Surface Properties
5.
Lab Chip ; 15(24): 4571-7, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26502076

ABSTRACT

We investigate the deformation characteristics of red blood cells (RBCs) on a rotating compact disc platform. Our study brings out the interplay between haemoglobin content and RBC deformability in a centrifugally actuated microfluidic environment. We reveal that RBC deformations follow the similar trend of principal stress distributed throughout the radial direction, rendering an insight into the mechano-physical processes involved. This study can be used as a diagnostic marker to determine haematological disorders in diseased blood samples tested on compact disc based microfluidic platforms.


Subject(s)
Erythrocyte Deformability , Erythrocytes/cytology , Hemoglobins/analysis , Microfluidic Analytical Techniques/instrumentation , Compact Disks , Equipment Design , Erythrocytes/chemistry , Humans
6.
Soft Matter ; 11(35): 6957-67, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26235842

ABSTRACT

The flow of electrorheological fluids is characterized by an apparent increase in viscosity manifested by the yield stress property of the fluid, which is a function of the applied electric field and the concentration of the suspended solute phase within the dielectric medium. This property of electrorheological fluids generally hinders flow through a capillary if the imposed shear stress is lower than the induced yield stress. This results in a plug-like zone in the flow profile, thus giving the fluid Bingham plastic properties. In the present work, we study such influences of the yield stress on the capillary filling dynamics of an electrorheological fluid by employing a rheologically consistent reduced order formalism. One important feature of the theoretical formalism is its ability to address the intricate interplay between the surface tension and viscous forces, both of which depend sensitively on the electric field. Our analysis reveals that the progress of the capillary front is hindered at an intermediate temporal regime, which is attributable to the increase of the span of the plug-zone across the channel width with time. With a preliminary understanding on the cessation of the capillary front advancement due to the yield stress property of the electrorheological fluids, we further strive to achieve a basic comparison with an experimental study made earlier. Reasonable agreements with the reported data support our theoretical framework. Comprehensive scaling analysis brings further insight to our reported observations over various temporal regimes.

7.
Article in English | MEDLINE | ID: mdl-25353897

ABSTRACT

We consider the filling of a capillary by a viscoelastic fluid described by the Phan-Thien-Tanner (PTT) constitutive behavior. By considering both vertical capillary filling and horizontal capillary filling, we demarcate the role played by gravity and fluid rheology towards long-time oscillations in the capillary penetration depth. We also consider the isothermal filling of the capillary for a closed channel and thus bring out the fundamental differences in the nature of capillary filling for PTT and Newtonian fluids for closed channels in comparison to open channels. Through a scaling analysis, we highlight a distinct viscoelastic regime in the horizontal capillary filling which is in contrast to the Washburn scaling seen in the case of Newtonian fluids. Such an analysis with a very general constitutive behavior is therefore expected to shed light on many areas of microfluidics which focus on biofluids that are often well described by the PTT constitutive behavior.

8.
Soft Matter ; 10(42): 8512-23, 2014 Nov 14.
Article in English | MEDLINE | ID: mdl-25242073

ABSTRACT

We investigate the interfacial electro-chemical-hydrodynamics of an incompressible immiscible binary fluid system that moves in a narrow fluidic channel under time-periodic electroosmotic effects. We apply an alternating electrical voltage that sets the binary fluids in motion along the channel, whereas the channel walls are lined with chemical patch to alter the wetting characteristics of the surface. We demonstrate that the pulsating nature of the externally applied electric field in conjunction with the wetting characteristics of the surface may lead to some fascinating behavior of the contact line motion; which, in turn, may affect the capillary filling dynamics in an intriguing manner. Our results also unveil the profound influence of two important governing factors actuating the flow, namely, the frequency and amplitude of the time periodic electric field, on the tunability of the capillary filling rate and power requirement for filling the fluids into the channel.

9.
Article in English | MEDLINE | ID: mdl-25019889

ABSTRACT

We report various regimes of capillary filling dynamics under electromagneto-hydrodynamic interactions, in the presence of electrical double layer effects. Our chosen configuration considers an axial electric field and transverse magnetic field acting on an electrolyte. We demonstrate that for positive interfacial potential, the movement of the capillary front resembles capillary rise in a vertical channel under the action of gravity. We also evaluate the time taken by the capillary front to reach the final equilibrium position for positive interfacial potential and show that the presence of a transverse magnetic field delays the time of travel of the liquid front, thereby sustaining the capillary motion for a longer time. Our scaling estimates reveal that the initial linear regime starts, as well as ends, much earlier in the presence of electrical and magnetic body forces, as compared to the corresponding transients observed under pure surface tension driven flow. We further obtain a long time solution for the capillary imbibition for positive interfacial potential, and derive a scaling estimate of the capillary stopping time as a function of the applied magnetic field and an intrinsic length scale delineating electromechanical influences of the electrical double layer. Our findings are likely to offer alternative strategies of controlling dynamical features of capillary imbibition, by modulating the interplay between electromagnetic interactions, electrical double layer phenomena, and hydrodynamics over interfacial scales.


Subject(s)
Capillary Action , Electromagnetic Fields , Hydrodynamics , Models, Chemical , Rheology/methods , Solutions/chemistry , Computer Simulation , Gravitation , Osmotic Pressure , Pressure , Solutions/radiation effects
10.
Electrophoresis ; 35(5): 662-9, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24132646

ABSTRACT

We study the coupled effect of electrokinetic phenomena and fluid rheology in altering the induced streaming potential in narrow fluidic confinements, which is manifested by establishing a time periodic pressure-driven flow in presence of electrical double layer phenomenon. However, in sharp contrast with reported literature, we take into account nonelectrostatic ion-ion interactions toward estimating the same in addition to electrostatic interactions and steric effects. We employ power law based rheological model for estimating the induced streaming potential. We bring out an intricate interaction between nonelectrostatic interactions and fluid rheology on the concerned electrokinetic phenomena, bearing immense consequences toward designing of integrated lab-on-a-chip-based microdevices and nanodevices.


Subject(s)
Ions , Models, Chemical , Rheology/methods , Models, Theoretical , Static Electricity
11.
Article in English | MEDLINE | ID: mdl-24125338

ABSTRACT

In the present study, we focus on evaluating the induced streaming electric field along the orthogonal directions in a narrow fluidic confinement in the presence of patterned surface wettability and modulated surface charges. We attempt to assess the implications of such modulations on the related important quantities and pinpoint the regimes of improved induced streaming potential field and the resulting anisotropy in the induced potential. Our results reveal that for certain combinations of the parameters characterizing the modulated slip, a significant amount of augmentation in the streaming electric field might be obtained, whereas in other cases the effects may lead to adverse consequences. We further demonstrate that the presence of anisotropic modulations on the channel walls give rise to considerable off-diagonal effects, which makes the streaming potential "disoriented" with the applied pressure gradient, when the same is not applied along one of the orthogonal directions. Our analysis also shows that one can remove such "mis-orientations" by finely tuning several relevant flow and geometric parameters, which may bear immense scientific and technological consequences towards an improved design of miniaturized energy conversion devices.

12.
Article in English | MEDLINE | ID: mdl-24032938

ABSTRACT

We investigate the contact-line dynamics of two immiscible fluids in a narrow fluidic confinement comprising wettability-gradient surfaces, where the bulk fluid motion is actuated by an externally applied electric field. We assume that the channel walls bear spatially uniform surface potential. Our analysis, based on the diffuse interface formalism, reveals that the contact line undergoes stick-slip motion over the chemical patches and its velocity is a strong function of the interfacial electrokinetics. We also show that the tendency of the contact line of getting pinned to the selected patches can decrease or increase with its progression along the channel, depending on the ratio of the permittivities of the two fluids. Finally, we establish the functional dependency of the time taken by the contact line to move across the patches (capillary filling time) on the combined consequences of interfacial electrochemistry and wettability patterning.

13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(4 Pt 2): 046304, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22680571

ABSTRACT

In the present study, we focus on alterations in flow physics as a consequence of interactions between patterned-wettability gradients on microfluidic substrates with modulated surface charge distributions, giving rise to an intricate electrohydrodynamic coupling over small scales. We demonstrate that by exploiting such intricate coupling, it may be possible to pattern vortices occurring in the fluidic confinement by exploiting an interplay between the Navier slip and electro-osmotic transport. Our studies do reveal that the resultant flow structure originating out of the spatially periodic variations in the surface charge and surface wettability may depend critically on several independently tunable controlling parameters, such as the amplitudes and frequencies of the respective patterning functions, the phase shift between the two, an asymmetry factor, and the channel height to Debye length ratio. We show that judicious choices with regard to the combinations of these parameters may result in significant augmentations in the corresponding mixing efficiency without any appreciable compromise in the net microfluidic throughput. Furthermore, our studies reveal an optimum patterning frequency, which results in the most efficient microfluidic mixing within the constraints of achieving a desired volumetric flow rate. Our results also demonstrate that the net flow rate is maximized when the surface wettability variation functions and surface charge-density functions are in phase, whereas mixing is best facilitated when they are in opposite phase. In practice, therefore, one may select an intermediate value of the phase angle depending on the extent of compromise necessary between flow rate and mixing characteristics, yielding far-ranging scientific and technological advances toward an improved design of miniaturized fluidic devices of practical relevance.


Subject(s)
Microfluidic Analytical Techniques/instrumentation , Physics/methods , Algorithms , Computer Simulation , Electrochemistry , Hydrodynamics , Hydrophobic and Hydrophilic Interactions , Materials Testing , Microfluidics , Models, Theoretical , Osmosis , Static Electricity , Surface Properties , Wettability
SELECTION OF CITATIONS
SEARCH DETAIL
...