Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Gut Microbes ; 14(1): 2108281, 2022.
Article in English | MEDLINE | ID: mdl-35939622

ABSTRACT

The small intestinal epithelial barrier inputs signals from the gut microbiota in order to balance physiological inflammation and tolerance, and to promote homeostasis. Understanding the dynamic relationship between microbes and intestinal epithelial cells has been a challenge given the cellular heterogeneity associated with the epithelium and the inherent difficulty of isolating and identifying individual cell types. Here, we used single-cell RNA sequencing of small intestinal epithelial cells from germ-free and specific pathogen-free mice to study microbe-epithelium crosstalk at the single-cell resolution. The presence of microbiota did not impact overall cellular composition of the epithelium, except for an increase in Paneth cell numbers. Contrary to expectations, pattern recognition receptors and their adaptors were not induced by the microbiota but showed concentrated expression in a small proportion of epithelial cell subsets. The presence of the microbiota induced the expression of host defense- and glycosylation-associated genes in distinct epithelial cell compartments. Moreover, the microbiota altered the metabolic gene expression profile of epithelial cells, consequently inducing mTOR signaling thereby suggesting microbe-derived metabolites directly activate and regulate mTOR signaling. Altogether, these findings present a resource of the homeostatic transcriptional and cellular impact of the microbiota on the small intestinal epithelium.


Subject(s)
Gastrointestinal Microbiome , Animals , Intestinal Mucosa/metabolism , Intestine, Small , Mice , Paneth Cells , TOR Serine-Threonine Kinases/metabolism
2.
Curr Res Microb Sci ; 2: 100085, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34934993

ABSTRACT

Rumen content-associated (RC) and epithelial tissue-attached (RT) bacterial communities are composed of different phylotypes and play distinctive roles. This study aimed to compare the composition of the RT and RC bacterial communities of steers differing in feed efficiency. The microbiota of RT and RC samples collected from sixteen beef steers with high or low residual feed intake (RFI) were analyzed through sequencing of partial 16S rRNA gene amplicons. Bacteroidetes, Proteobacteria and Firmicutes were the predominant phyla and Prevotella was the most abundant genus in both RC and RT bacterial communities. In total, 19 OTUs of the RC samples and 19 OTUs of the RT samples were differentially abundant (DA) between H-RFI and l-RFI steers. Among them, a common DA OTU belonged to Prevotella genus was identified in both RC and RT samples, making it the potential key microbial marker for indicating feed efficiency of steers. The co-occurrence of the DA OTUs among RT and RC samples suggest the importance of these two communities function as a complete system in influencing host feed efficiency.

3.
Life Sci Alliance ; 3(5)2020 05.
Article in English | MEDLINE | ID: mdl-32303588

ABSTRACT

Human cerebral organoid (hCO) models offer the opportunity to understand fundamental processes underlying human-specific cortical development and pathophysiology in an experimentally tractable system. Although diverse methods to generate brain organoids have been developed, a major challenge has been the production of organoids with reproducible cell type heterogeneity and macroscopic morphology. Here, we have directly addressed this problem by establishing a robust production pipeline to generate morphologically consistent hCOs and achieve a success rate of >80%. These hCOs include both a radial glial stem cell compartment and electrophysiologically competent mature neurons. Moreover, we show using immunofluorescence microscopy and single-cell profiling that individual organoids display reproducible cell type compositions that are conserved upon extended culture. We expect that application of this method will provide new insights into brain development and disease processes.


Subject(s)
Cell Culture Techniques/methods , Organoids/growth & development , Pluripotent Stem Cells/metabolism , Brain/cytology , Brain/metabolism , Cell Differentiation/physiology , Female , Humans , Induced Pluripotent Stem Cells/cytology , Male , Neural Stem Cells/cytology , Neurogenesis/physiology , Organoids/cytology , Pluripotent Stem Cells/cytology
4.
Nature ; 569(7754): 121-125, 2019 05.
Article in English | MEDLINE | ID: mdl-31019301

ABSTRACT

The turnover of the intestinal epithelium is driven by multipotent LGR5+ crypt-base columnar cells (CBCs) located at the bottom of crypt zones1. However, CBCs are lost following injury, such as irradiation2, but the intestinal epithelium is nevertheless able to recover3. Thus, a second population of quiescent '+4' cells, or reserve stem cells (RSCs), has previously been proposed to regenerate the damaged intestine4-7. Although CBCs and RSCs were thought to be mutually exclusive4,8, subsequent studies have found that LGR5+ CBCs express RSC markers9 and that RSCs were dispensable-whereas LGR5+ cells were essential-for repair of the damaged intestine3. In addition, progenitors of absorptive enterocytes10, secretory cells11-15 and slow cycling LGR5+ cells16 have been shown to contribute to regeneration whereas the transcriptional regulator YAP1, which is important for intestinal regeneration, was suggested to induce a pro-survival phenotype in LGR5+ cells17. Thus, whether cellular plasticity or distinct cell populations are critical for intestinal regeneration remains unknown. Here we applied single-cell RNA sequencing to profile the regenerating mouse intestine and identified a distinct, damage-induced quiescent cell type that we term the revival stem cell (revSC). revSCs are marked by high clusterin expression and are extremely rare under homoeostatic conditions, yet give rise-in a temporal hierarchy-to all the major cell types of the intestine, including LGR5+ CBCs. After intestinal damage by irradiation, targeted ablation of LGR5+ CBCs, or treatment with dextran sodium sulfate, revSCs undergo a YAP1-dependent transient expansion, reconstitute the LGR5+ CBC compartment and are required to regenerate a functional intestine. These studies thus define a unique stem cell that is mobilized by damage to revive the homoeostatic stem cell compartment and regenerate the intestinal epithelium.


Subject(s)
Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Regeneration/genetics , Single-Cell Analysis , Stem Cells/cytology , Stem Cells/metabolism , Transcriptome , Animals , Female , Homeostasis , Male , Mice , Mice, Transgenic , Multipotent Stem Cells/cytology , Multipotent Stem Cells/metabolism , Regeneration/physiology , Sequence Analysis, RNA
5.
J Dairy Sci ; 101(6): 5605-5618, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29274958

ABSTRACT

Metagenomics and metatranscriptomics can capture the whole genome and transcriptome repertoire of microorganisms through sequencing total DNA/RNA from various environmental samples, providing both taxonomic and functional information with high resolution. The unique and complex rumen microbial ecosystem is receiving great research attention because the rumen microbiota coevolves with the host and equips ruminants with the ability to convert cellulosic plant materials to high-protein products for human consumption. To date, hundreds to thousands of microbial phylotypes have been identified in the rumen using culture-independent molecular-based approaches, and genomic information of rumen microorganisms is rapidly accumulating through the single genome sequencing. However, functional characteristics of the rumen microbiome have not been well described because there are numerous uncultivable microorganisms in the rumen. The advent of metagenomics and metatranscriptomics along with advanced bioinformatics methods can help us better understand mechanisms of the rumen fermentation, which is vital for improving nutrient utilization and animal productivity. Therefore, in this review, we summarize a general workflow to conduct rumen metagenomics and metatranscriptomics and discuss how the data can be interpreted to be useful information. Moreover, we review recent literatures studying associations between the rumen microbiome and host phenotypes (e.g., feed efficiency and methane emissions) using these approaches, aiming to provide a useful guide to include studying the rumen microbiome as one of the research objectives using these 2 approaches.


Subject(s)
Metagenomics , Rumen/microbiology , Ruminants , Animals , Gene Expression Profiling , Methane/metabolism , Microbiota , Transcriptome
6.
Front Microbiol ; 8: 2445, 2017.
Article in English | MEDLINE | ID: mdl-29270165

ABSTRACT

The advent of next generation sequencing and bioinformatics tools have greatly advanced our knowledge about the phylogenetic diversity and ecological role of microbes inhabiting the mammalian gut. However, there is a lack of information on the evaluation of these computational tools in the context of the rumen microbiome as these programs have mostly been benchmarked on real or simulated datasets generated from human studies. In this study, we compared the outcomes of two methods, Kraken (mRNA based) and a pipeline developed in-house based on Mothur (16S rRNA based), to assess the taxonomic profiles (bacteria and archaea) of rumen microbial communities using total RNA sequencing of rumen fluid collected from 12 cattle with differing feed conversion ratios (FCR). Both approaches revealed a similar phyla distribution of the most abundant taxa, with Bacteroidetes, Firmicutes, and Proteobacteria accounting for approximately 80% of total bacterial abundance. For bacterial taxa, although 69 genera were commonly detected by both methods, an additional 159 genera were exclusively identified by Kraken. Kraken detected 423 species, while Mothur was not able to assign bacterial sequences to the species level. For archaea, both methods generated similar results only for the abundance of Methanomassiliicoccaceae (previously referred as RCC), which comprised more than 65% of the total archaeal families. Taxon R4-41B was exclusively identified by Mothur in the rumen of feed efficient bulls, whereas Kraken uniquely identified Methanococcaceae in inefficient bulls. Although Kraken enhanced the microbial classification at the species level, identification of bacteria or archaea in the rumen is limited due to a lack of reference genomes for the rumen microbiome. The findings from this study suggest that the development of the combined pipelines using Mothur and Kraken is needed for a more inclusive and representative classification of microbiomes.

7.
Hum Mol Genet ; 21(22): 4857-75, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-22869680

ABSTRACT

Niemann-Pick type C (NPC) disease, an autosomal recessive disorder caused primarily by loss-of-function mutations in NPC1 gene, is characterized neuropathologically by intracellular cholesterol accumulation, gliosis and neuronal loss in selected brain regions. Recent studies have shown that NPC disease exhibits intriguing parallels with Alzheimer's disease (AD), including the presence of tau-positive neurofibrillary tangles (NFTs) and ß-amyloid (Aß)-related peptides in vulnerable brain regions. Since enhanced cholesterol level, which acts as a risk factor for AD, can increase Aß production by regulating amyloid precursor protein (APP) metabolism, it is possible that APP overexpression can influence cholesterol-regulated NPC pathology. We have addressed this issue in a novel bigenic mice (ANPC) generated by crossing heterozygous Npc1-deficient mice with mutant human APP transgenic mice. These mice exhibited decreased lifespan, early object memory and motor impairments, and exacerbated glial pathology compared with other littermates. Neurodegeneration observed in the cerebellum of ANPC mice was found to be accelerated along with a selective increase in the phosphorylation/cleavage of tau protein. Additionally, enhanced levels/activity of cytosolic cathepsin D together with cytochrome c and Bcl-2-associated X protein suggest a role for the lysosomal enzyme in the caspase-induced degeneration of neurons in ANPC mice. The reversal of cholesterol accretion by 2-hydroxypropyl-ß-cyclodextrin (2-HPC) treatment increased longevity and attenuated behavioral/pathological abnormalities in ANPC mice. Collectively, our results reveal that overexpression of APP in Npc1-deficient mice can negatively influence longevity and a wide spectrum of behavioral/neuropathological abnormalities, thus raising the possibility that APP and NPC1 may interact functionally to regulate the development of AD and NPC pathologies.


Subject(s)
Amyloid beta-Protein Precursor/genetics , Mutation , Niemann-Pick Disease, Type C/genetics , Niemann-Pick Disease, Type C/pathology , beta-Cyclodextrins/pharmacology , Amyloid beta-Protein Precursor/metabolism , Animals , Cathepsin D/metabolism , Cholesterol/metabolism , Demyelinating Diseases/genetics , Demyelinating Diseases/metabolism , Disease Models, Animal , Humans , Memory Disorders/genetics , Mice , Mice, Transgenic , Motor Activity/drug effects , Motor Activity/genetics , Neuroglia/metabolism , Neuroglia/pathology , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Niemann-Pick Disease, Type C/mortality , Phosphorylation/drug effects , Synapses/metabolism , beta-Cyclodextrins/administration & dosage , tau Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...