Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Nutr ; 10: 1228172, 2023.
Article in English | MEDLINE | ID: mdl-37823087

ABSTRACT

Millets are becoming more popular as a healthy substitute for people with lifestyle disorders. They offer dietary fiber, polyphenols, fatty acids, minerals, vitamins, protein, and antioxidants. The nutritional importance of millets leads to the present in-silico study of selective bioactive compounds docked against the targets of lifestyle diseases, viz., diabetes, hypertension, and atherosclerosis using molecular docking and molecular simulations approach. Pharmacokinetic analysis was also carried out to analyse ADME properties and toxicity analysis, drug-likeliness, and finally target prediction for new targets for uncharacterized compounds or secondary targets for recognized molecules by Swiss Target Prediction was also done. The docking results revealed that the bioactive compound flavan-4-ol, among all the 50 compounds studied, best docked to all the four targets of lifestyle diseases, viz., Human dipeptidyl peptidase IV (-5.94 kcal mol-1 binding energy), Sodium-glucose cotransporter-2 (-6.49 kcal mol-1) diabetes-related enzyme, the Human angiotensin-converting enzyme (-6.31 kcal mol-1) which plays a significant role in hypertension, and Proprotein convertase subtilisin kexin type 9 (-4.67 kcal mol-1) for atherosclerosis. Molecular dynamics simulation analysis substantiates that the flavan-4-ol forms a better stability complex with all the targets. ADMET profiles further strengthened the candidature of the flavan-4-ol bioactive compound to be considered for trial as an inhibitor of targets DPPIV, SGLT2, PCSK9, and hACE. We suggest that more research be conducted, taking Flavon-4-ol into account where it can be used as standard treatment for lifestyle diseases.

2.
Front Plant Sci ; 12: 603600, 2021.
Article in English | MEDLINE | ID: mdl-34497616

ABSTRACT

Cauliflower is an important extensively grown cool season vegetable in India. Black rot and downy mildew are major devastating diseases reducing yield and quality of the crop. To tackle these through host plant resistance, a marker-assisted backcross breeding method was followed to pyramid a black rot-resistant gene (Xca1bo) and a downy mildew-resistant gene (Ppa3) from donors BR-161 and BR-2, respectively, into the background of Pusa Meghna cauliflower cultivar. Marker-assisted backcross breeding was followed up to BC2 generation using SCAR marker ScOPO-04833 and SSR marker BoGMS0624 for black rot and downy mildew resistance genes in foreground selection, respectively. In background selection, at each stage of backcrossing, 47 parental polymorphic SSR markers were used. The graphical genotyping of the five two-gene (Xca1boXca1boPpa3Ppa3) homozygous BC2F2 plants showed an average recovery of 85.44% of the Pusa Meghna genome with highest genome recovery of 91.7%. The genome contribution of donor parents (BR-161 and BR-2) was 8.26 with 6.34% of residual heterozygousity. The backcross derived pyramided lines BC2F2:3-7-16 and BC2F2:3-7-33 showed high resistance to both the diseases and exhibited higher yield and vitamin C content as compared with recipient parent Pusa Meghna. It is, therefore, evident from this study that resistant genes can be introgressed successfully into a Pusa Meghna cultivar without any yield penalty, benefitting farmers with reduced input cost and consumers with chemical residue free produce. Besides, the pyramided lines carrying dominant resistant genes can be exploited in a hybridization programme to develop hybrid(s) in cauliflower.

4.
Appl Biochem Biotechnol ; 193(8): 2455-2469, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33765267

ABSTRACT

Co-utilization of xylose and glucose and subsequent fermentation using Saccharomyces cerevisiae could enhance ethanol productivity. Directed engineering approaches have met with limited success due to interconnectivity of xylose metabolism with other intrinsic, hidden pathways. Therefore, random approaches like protoplast fusion were used to reprogram unidentified mechanisms. Saccharomyces cerevisiae LN, the best hexose fermenter, was fused with xylose fermenting Pichia stipitis NCIM 3498. Protoplasts prepared using glucanex were fused under electric impulse and fusants were selected using 10% ethanol and cycloheximide (50 ppm) markers. Two fusants, 1a.23 and 1a.30 showing fast growth on xylose and tolerance to 10% ethanol, were selected. Higher extracellular protein expression observed in fusants as compared to parents was corroborated by higher number of bands resolved by two-dimensional analysis. Overexpression of XYL1, XYL2, XKS, and XUT4 in fusants as compared to S. cerevisiae LN as observed by RT-PCR analysis was substantiated by higher specific activities of XR, XDH, and XKS enzymes in fusants. During lignocellulosic hydrolysate fermentation, fusants could utilize glucose faster than the parent P. stipitis NCIM 3498 and xylose consumption in fusants was higher than S. cerevisiae LN.


Subject(s)
Fungal Proteins/blood , Gene Expression Regulation, Fungal , Protoplasts/metabolism , Saccharomyces cerevisiae , Saccharomycetales , Xylose/metabolism , Fungal Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomycetales/genetics , Saccharomycetales/metabolism
5.
Front Microbiol ; 11: 579504, 2020.
Article in English | MEDLINE | ID: mdl-33193207

ABSTRACT

The rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) constrains production in major rice growing countries of Asia. Xoo injects transcription activator-like effectors (TALEs) that bind to and activate host "susceptibility" (S) genes that are important for disease. The bacterial blight resistance gene xa5, which reduces TALE activity generally, has been widely deployed. However, strains defeating xa5 have been reported in India and recently also in Thailand. We completely sequenced and compared the genomes of one such strain from each country and examined the encoded TALEs. The two genomes are nearly identical, including the TALE genes, and belong to a previously identified, highly clonal lineage. Each strain harbors a TALE known to activate the major S gene SWEET11 strongly enough to be effective even when diminished by xa5. The findings suggest international migration of the xa5-compatible pathotype and highlight the utility of whole genome sequencing and TALE analysis for understanding and responding to breakdown of resistance.

6.
Front Microbiol ; 9: 2703, 2018.
Article in English | MEDLINE | ID: mdl-30483230

ABSTRACT

The rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) injects transcription activator-like effectors (TALEs) that bind and activate host "susceptibility" (S) genes important for disease. Clade III SWEET genes are major S genes for bacterial blight. The resistance genes xa5, which reduces TALE activity generally, and xa13, a SWEET11 allele not recognized by the cognate TALE, have been effectively deployed. However, strains that defeat both resistance genes individually were recently reported in India and Thailand. To gain insight into the mechanism(s), we completely sequenced the genome of one such strain from each country and examined the encoded TALEs. Strikingly, the two strains are clones, sharing nearly identical TALE repertoires, including a TALE known to activate SWEET11 strongly enough to be effective even when diminished by xa5. We next investigated SWEET gene induction by the Indian strain. The Indian strain induced no clade III SWEET in plants harboring xa13, indicating a pathogen adaptation that relieves dependence on these genes for susceptibility. The findings open a door to mechanistic understanding of the role SWEET genes play in susceptibility and illustrate the importance of complete genome sequence-based monitoring of Xoo populations in developing varieties with effective disease resistance.

SELECTION OF CITATIONS
SEARCH DETAIL
...