Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 66: 128728, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35413417

ABSTRACT

Dysregulated JAK-STAT signaling has been proven to be involved in several immune-mediated diseases. Several janus kinase (JAK) inhibitors have been approved for the treatment of various inflammatory and autoimmune diseases such as rheumatoid arthritis (RA), plaque psoriasis, psoriatic arthritis, inflammatory bowel disease (IBD). Here, we report the design, optimisation, synthesis and biological evaluation of momelotinib analogues (a pyrimidine based JAK inhibitor), to get pan-JAK inhibitors. Systematic structure activity relationship studies led to the discovery of compound 32, which potently inhibited JAK1, JAK2 and JAK3. The in vivo investigation indicated that compound 32 possessed favourable pharmacokinetic properties and displayed superior anti-inflammatory efficacy than momelotinib 1. Accordingly, compound 32 was advanced into preclinical development.


Subject(s)
Immune System Diseases , Janus Kinase Inhibitors , Benzamides , Humans , Janus Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use
2.
Bioorg Med Chem Lett ; 53: 128421, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34718128

ABSTRACT

Amino acid restriction by inhibition of neutral amino acid transporter, B0AT1 (SLC6A19) activity has been recently shown to improve glyceamic control by upregulating glucagon like peptide (GLP1) and fibroblast growth factor (FGF21) in mice. Hence, pharmacological inhibition of B0AT1 is expected to treat type-2 diabetes and related disorder. In this study, rationally designed trifluoromethyl sulfonyl derivatives were identified as novel, potent and orally bioavailable B0AT1 inhibitors. Compound 39 was found to be nanomolar potent (IC50: 0.035 µM) B0AT1 inhibitor with excellent pharmacokinetic profile (%F: 66) in mice and efficacious in vivo in diet induced obese (DIO) mice model.


Subject(s)
Amino Acid Transport Systems, Neutral/antagonists & inhibitors , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Drug Discovery , Sulfonamides/pharmacology , Amino Acid Transport Systems, Neutral/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Dose-Response Relationship, Drug , Mice , Mice, Inbred C57BL , Molecular Structure , Structure-Activity Relationship , Sulfonamides/chemistry
3.
Pharmacol Res Perspect ; 8(4): e00565, 2020 08.
Article in English | MEDLINE | ID: mdl-32790160

ABSTRACT

Bruton's tyrosine kinase (BTK) plays a central and pivotal role in controlling the pathways involved in the pathobiology of cancer, rheumatoid arthritis (RA), and other autoimmune disorders. ZYBT1 is a potent, irreversible, specific BTK inhibitor that inhibits the ibrutinib-resistant C481S BTK with nanomolar potency. ZYBT1 is found to be a promising molecule to treat both cancer and RA. In the present report we profiled the molecule for in-vitro, in-vivo activity, and pharmacokinetic properties. ZYBT1 inhibits BTK and C481S BTK with an IC50 of 1 nmol/L and 14 nmol/L, respectively, inhibits the growth of various leukemic cell lines with IC50 of 1 nmol/L to 15 µmol/L, blocks the phosphorylation of BTK and PLCγ2, and inhibits secretion of TNF-α, IL-8 and IL-6. It has favorable pharmacokinetic properties suitable for using as an oral anti-cancer and anti-arthritic drug. In accordance with the in-vitro properties, it demonstrated robust efficacy in murine models of collagen-induced arthritis (CIA) and streptococcal cell wall (SCW) induced arthritis. In both models, ZYBT1 alone could suppress the progression of the diseases. It also reduced the growth of TMD8 xenograft tumor. The results suggested that ZYBT1 has high potential for treating RA, and cancer.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Animals , Arthritis, Experimental/drug therapy , Arthritis, Experimental/enzymology , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/enzymology , Humans , Inhibitory Concentration 50 , Mice , Neoplasms/drug therapy , Neoplasms/enzymology , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacokinetics
4.
Bioorg Chem ; 99: 103851, 2020 06.
Article in English | MEDLINE | ID: mdl-32334196

ABSTRACT

Selective inhibition of janus kinase (JAK) has been identified as an important strategy for the treatment of autoimmune disorders. Optimization at the C2 and C4-positions of pyrimidine ring of Cerdulatinib led to the discovery of a potent and orally bioavailable 2,4-diaminopyrimidine-5-carboxamide based JAK3 selective inhibitor (11i). A cellular selectivity study further confirmed that 11i preferentially inhibits JAK3 over JAK1, in JAK/STAT signaling pathway. Compound 11i showed good anti-arthritic activity, which could be correlated with its improved oral bioavailability. In the repeat dose acute toxicity study, 11i showed no adverse changes related to gross pathology and clinical signs, indicating that the new class JAK3 selective inhibitor could be viable therapeutic option for the treatment of rheumatoid arthritis.


Subject(s)
Antirheumatic Agents/pharmacology , Arthritis, Experimental/drug therapy , Drug Discovery , Janus Kinase 3/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Animals , Antirheumatic Agents/chemical synthesis , Antirheumatic Agents/chemistry , Arthritis, Experimental/blood , Cell Line , Dose-Response Relationship, Drug , Humans , Janus Kinase 3/blood , Janus Kinase 3/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Rats , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 29(11): 1313-1319, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30975623

ABSTRACT

PI3Kδ is implicated in various inflammatory and autoimmune diseases. For the effective treatment of chronic immunological disorders such as rheumatoid arthritis, it is essential to develop isoform selective PI3Kδ inhibitors. Structure guided optimization of an imidazo-quinolinones based pan-PI3K/m-TOR inhibitor (Dactolisib) led to the discovery of a potent and orally bioavailable PI3Kδ isoform selective inhibitor (10h), with an improved efficacy in the animal models.


Subject(s)
Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Drug Discovery , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Quinolones/pharmacology , Class I Phosphatidylinositol 3-Kinases/metabolism , Dose-Response Relationship, Drug , Humans , Molecular Structure , Phosphoinositide-3 Kinase Inhibitors/chemical synthesis , Phosphoinositide-3 Kinase Inhibitors/chemistry , Quinolones/chemical synthesis , Quinolones/chemistry , Structure-Activity Relationship
6.
Cancer Chemother Pharmacol ; 82(4): 635-647, 2018 10.
Article in English | MEDLINE | ID: mdl-30046848

ABSTRACT

PURPOSE: Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme involved in the detection and repair of DNA damage. Studies have shown that inhibition of PARP and Tankyrase (TNKS) has significant antitumor effect in several types of cancers including BRCA-negative breast cancers. METHODS: Identification of ZYTP1, a novel PARP inhibitor, through a battery of in vitro assays and in vivo studies. PARP and TNKS inhibitory activity of ZYTP1 was assessed in cell-free kinase assay. In vitro cell killing potency of ZYTP1 was tested in a panel of cell lines including BRCA-negative cells. ZYTP1 was also tested in xenograft models in combination with temozolomide (TMZ). The pharmacokinetic profile of ZYTP1 was determined in rodent and non-rodent preclinical species. Safety of ZYTP1 was assessed in Wistar rats and Beagle dogs upon repeated dosing. RESULTS: ZYTP1 inhibited PARP1, PARP2, Tankyrase-1 and Tankyrase-2 with IC50 of 5.4, 0.7, 133.3 and 289.8 nM, respectively, and additionally trapped PARP1 onto damaged DNA. It also potentiated MMS-mediated killing of different cancer cell lines. Compound demonstrated good Caco-2 cell permeability. The oral bioavailability of ZYTP1 in mice, rats and dogs ranged between 40 and 79% and demonstrated efficacy in colon cancer xenograft model at a dose of 1-10 mg/kg in combination with TMZ. In a 28-day repeat dosing, oral toxicity study in rats, it was found to show > 10× safety margin. CONCLUSIONS: ZYTP1 is a novel PARP inhibitor that showed potential for development as a treatment for various solid tumors.


Subject(s)
Breast Neoplasms/drug therapy , Colonic Neoplasms/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Animals , Apoptosis/drug effects , Biological Availability , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Damage/drug effects , Dogs , Drug Monitoring/methods , Humans , Mice , Poly(ADP-ribose) Polymerases/metabolism , Rats , Rats, Wistar , Tankyrases/antagonists & inhibitors , Treatment Outcome , Xenograft Model Antitumor Assays
8.
Biochem Biophys Res Commun ; 316(2): 540-4, 2004 Apr 02.
Article in English | MEDLINE | ID: mdl-15020251

ABSTRACT

The superoxide dismutase (SOD) gene (slr 1516) from the cyanobacterium Synechocystis sp. PCC 6803 was cloned and overexpressed in Escherichia coli BL 21 (DE3) using the pET-20b(+) expression vector. E. coli cells transformed with pET-SOD overexpressed the protein in cytosol, upon induction by isopropyl beta-D-thiogalactopyranoside (IPTG). The recombinant protein was purified to near homogeneity by gel filtration and ion-exchange chromatography. The SOD activity of the recombinant protein was sensitive to hydrogen peroxide and sodium azide, confirming it to be FeSOD. The pET-FeSOD transformed E. coli showed significantly higher SOD activity and tolerance to paraquat-mediated growth inhibition compared to the empty vector transformed cells. Based on these results it is suggested that overexpression of FeSOD gene from a heterologous source like Synechocystis sp. PCC 6803 may provide protection to E. coli against superoxide radical-mediated oxidative stress mediated by paraquat.


Subject(s)
Cyanobacteria/enzymology , Escherichia coli/metabolism , Oxidative Stress , Superoxide Dismutase/metabolism , Cloning, Molecular , Escherichia coli/drug effects , Genes, Bacterial , Paraquat/pharmacology , Polymerase Chain Reaction , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Superoxide Dismutase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...