Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol Pharmacol ; 97: 104044, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36566951

ABSTRACT

Fluoride exposure through drinking water, foods, cosmetics, and drugs causes genotoxic effects, oxidative damage, and impaired cognitive abilities. In our study, the effects of fluoride on anxiety caused by the circadian clock and circadian clock changes in a zebrafish model were investigated at the molecular level on parents and the next generations. For this purpose, adult zebrafish were exposed to 1.5 ppm, 5 ppm, and 100 ppm fluoride for 6 weeks. At the end of exposure, anxiety-like behaviors and sleep/wake behaviors of the parent fish were evaluated with the circadian rhythm test and the novel tank test. In addition, antioxidant enzyme activities and melatonin levels in brain tissues were measured. In addition, morphological, physiological, molecular and behavioral analyzes of offspring taken from zebrafish exposed to fluoride were performed. In addition, histopathological analyzes were made in the brain tissues of both adult zebrafish and offspring, and the damage caused by fluoride was determined. The levels of BMAL1, CLOCK, PER2, GNAT2, BDNF and CRH proteins were measured by immunohistochemical analysis and significant changes in their levels were determined in the F- treated groups. The data obtained as a result of behavioral and molecular analyzes showed that parental fluoride exposure disrupts the circadian rhythm, causes anxiety-like behaviors, and decreases the levels of brain antioxidant enzymes and melatonin in parents. In addition, delay in hatching, increase in death and body malformations, and decrease in blood flow velocity, and locomotor activity was observed in parallel with dose increase in offspring. On the other hand, an increase in offspring apoptosis rate, ROS level, and lipid accumulation was detected. As a result, negative effects of fluoride exposure on both parents and next generations have been identified.


Subject(s)
Melatonin , Zebrafish , Animals , Zebrafish/metabolism , Fluorides/toxicity , Antioxidants/metabolism , Zebrafish Proteins/metabolism
2.
Eat Weight Disord ; 27(1): 163-177, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33710522

ABSTRACT

Anxiety and obesity are two current phenomena. They are among the important public health problems with increasing prevalence worldwide. Although it is claimed that there are strong relations between them, the mechanism of this relationship has not been fully clarified yet. On the other hand, the effect of this relationship on the offspring has been another research subject. In this study, obese zebrafish were obtained by feeding two different diets, one containing high amount of lipid (HF) and the other containing high amount of carbohydrate (HK), and their anxiety levels were evaluated. To establish a relationship between these two phenomena, in addition to histopathological and immunohistochemical analysis in the brain tissues of fish, the transcription levels of some genes related to lipid and carbohydrate metabolisms were determined. In addition, offspring were taken from obese zebrafish and studied to examine the effect of parental obesity on offspring. As a result, it was observed that the HC diet, causing more weight increase than the HF diet, showed an anxiolytic while the HF diet an anxiogenic effect. It was suggested that the probable cause of this situation may be the regulatory effect on the appetite-related genes depending on the upregulation severity of the PPAR gene family based on the diet content. In addition, it was also suggested that it may have contributed to this process in neuron degenerations caused by oxidative stress. Regarding effects on offspring, it can be concluded that HF diet-induced obesity has more negative effects on the next generation than the HC diet.Level of evidenceNo Level of evidence: animal study.


Subject(s)
Diet, High-Fat , Zebrafish , Animals , Anxiety/etiology , Carbohydrates , Diet, High-Fat/adverse effects , Humans , Obesity/etiology
3.
Toxicol Lett ; 353: 71-78, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34606945

ABSTRACT

Ethyl carbamate (EC, urethane), which is used as an anesthetic especially by veterinarians due to its very long duration of action, is also a naturally occurring compound in all fermented foods and beverages. Although the health problem of EC is related to its carcinogenic potential, the scarcity of current studies that can be used in the evaluation of usage limits encouraged us to do this study. In this context, zebrafish embryos were exposed to serial doses of EC. According to the results, it was observed that EC exposure caused a significant decrease in survival and hatching rates as well as significant body malformations. Whole-mount staining results showed that EC caused dose-dependent increased apoptosis. Oxidative stress caused by EC exposure was demonstrated by whole-mount staining, transcriptional and immunohistochemically. Furthermore, it has been shown histochemically that EC exposure causes necrosis and degeneration in the brain. In behavioral tests, it was observed that EC caused hyperactivity associated with these neuronal degenerations. In addition, a dramatic decrease in blood flow was detected in association with pericardial edema. In the light of the current results, it should be carefully considered that EC can be found naturally in many human diets, especially fermented foods.


Subject(s)
Embryo, Nonmammalian/drug effects , Gene Expression Regulation, Developmental/drug effects , Urethane/toxicity , Animals , Apoptosis/drug effects , Behavior, Animal , Dose-Response Relationship, Drug , Embryo, Nonmammalian/abnormalities , Immunohistochemistry , Larva/drug effects , Reactive Oxygen Species/metabolism , Transcription, Genetic , Urethane/administration & dosage , Zebrafish
4.
Int J Biol Macromol ; 163: 2465-2473, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32987073

ABSTRACT

The toxicity of sodium carboxymethyl cellulose (CMC), which has GRAS status and has been determined as "ADI non specified", was re-evaluated with a new modelling and molecular-based data. For this purpose, CMC, a food additive, was injected to the yolk sac (food) of the zebrafish embryo by the microinjection method at the 4th hour of fertilization at different concentrations. As a result, it was found that CMC showed no toxic effects within the framework of the parameters studied. But, we determined increasing lipid accumulation in zebrafish embryos exposed to CMC in a dose-dependent manner. To elucidate the mechanism underlying this lipid accumulation, the expression levels of genes related to obesity-linked lipid metabolism were examined. Our findings show that while CMC does not cause a toxic effect in zebrafish embryos, it can lead important effects on lipid metabolism by causing changes in the expression of some genes associated with obesity.


Subject(s)
Carboxymethylcellulose Sodium/adverse effects , Food Additives/adverse effects , Lipid Metabolism/drug effects , Obesity/metabolism , Animals , Carboxymethylcellulose Sodium/chemistry , Disease Models, Animal , Embryo, Nonmammalian , Food/adverse effects , Food Additives/chemistry , Humans , Obesity/chemically induced , Sodium/chemistry , Zebrafish/genetics , Zebrafish/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...