Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 127(40): 8586-8602, 2023 10 12.
Article in English | MEDLINE | ID: mdl-37775095

ABSTRACT

SARS-CoV-2 strains have made an appearance across the globe, causing over 757 million cases and over 6.85 million deaths at the time of writing. The emergence of these variants shows the amplitude of genetic variation to which the wild-type strains have been subjected. The rise of the different SARS-CoV-2 variants resulting from such genetic modification has significantly affected COVD-19's major impact on proliferation, virulence, and clinics. With the emergence of the variants of concern, the spike protein has been identified as a possible therapeutic target due to its critical role in binding to human cells and pathogenesis. These mutations could be linked to functional heterogeneity and use a different infection strategy. For example, the Omicron variant's multiple mutations should be carefully examined, as they represent one of the most widely spread strains and hint to us that there may be more genetic changes in the virus. As a result, we applied a common protocol where we reconstructed SARS-CoV-2 variants of concern and performed molecular dynamics simulations to study the stability of the ACE2-RBD complex in each variant. We also carried out free energy calculations to compare the binding and biophysical properties of the different SARS-CoV-2 variants when they interact with ACE2. Therefore, we were able to obtain consistent results and uncover new crucial residues that were essential for preserving a balance between maintaining a high affinity for ACE2 and the capacity to evade RBD-targeted antibodies. Our detailed structural analysis showed that SARS-CoV-2 variants of concern show a higher affinity for ACE2 compared to the Wuhan strain. Additionally, residues K417N and E484K/A might play a crucial role in antibody evasion, whereas Q498R and N501Y are specifically mutated to strengthen RBD affinity to ACE2 and, thereby, increase the viral effect of the COVID-19 virus.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , SARS-CoV-2 , Humans , Angiotensin-Converting Enzyme 2/genetics , Antibodies , COVID-19/virology , Mutation , Protein Binding , SARS-CoV-2/genetics
2.
Int J Mol Sci ; 23(3)2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35163673

ABSTRACT

Insulin-degrading enzyme (IDE) is a ubiquitously expressed metallopeptidase that degrades insulin and a large panel of amyloidogenic peptides. IDE is thought to be a potential therapeutic target for type-2 diabetes and neurodegenerative diseases, such as Alzheimer's disease. IDE catalytic chamber, known as a crypt, is formed, so that peptides can be enclosed and degraded. However, the molecular mechanism of the IDE function and peptide recognition, as well as its conformation changes, remains elusive. Our study elucidates IDE structural changes and explains how IDE conformational dynamics is important to modulate the catalytic cycle of IDE. In this aim, a free-substrate IDE crystallographic structure (PDB ID: 2JG4) was used to model a complete structure of IDE. IDE stability and flexibility were studied through molecular dynamics (MD) simulations to witness IDE conformational dynamics switching from a closed to an open state. The description of IDE structural changes was achieved by analysis of the cavity and its expansion over time. Moreover, the quasi-harmonic analysis of the hinge connecting IDE domains and the angles formed over the simulations gave more insights into IDE shifts. Overall, our results could guide toward the use of different approaches to study IDE with different substrates and inhibitors, while taking into account the conformational states resolved in our study.


Subject(s)
Insulysin/chemistry , Molecular Dynamics Simulation , Humans , Hydrogen Bonding , Thermodynamics , Water/chemistry
3.
Front Mol Biosci ; 7: 603983, 2020.
Article in English | MEDLINE | ID: mdl-33330630

ABSTRACT

The multi domain ceramide transfer protein (CERT) which contains the domains START and PH, is a protein that allows the transport of ceramide from the endoplasmic reticulum to the Golgi and so it plays a major role in sphingolipid metabolism. Recently, the crystal structure of the PH-START complex has been released, suggesting an inhibitory action of START to the binding of the PH domain to the Golgi apparatus and thus limiting the CERT activity. Our study presents a combination of docking and molecular dynamic simulations of N-(3-hydroxy-1-hydroxymethyl-3-phenylpropyl)alkanamides (HPA) analogs and limonoids compounds known to inhibit CERT. Through our computational study, we compared the binding affinity of 14 ligands at both domains (START and PH) and also at the START-PH interface, including several mutations known to play a role in the CERT's activity. At the difference of HPA compounds, limonoids have a stronger binding affinity for the START-PH interface. Furthermore, 2 inhibitors (HPA-12 and isogedunin) were investigated through molecular dynamic (MD) simulations. 50 ns of molecular dynamic simulations have displayed the stability of isogedunin as well as keys residues in the binding of this molecule at the interface of the PH-START complex. Therefore, this study suggests a novel inhibitory mechanism of CERT for limonoid compounds involving the stabilization of the START-PH interface. This could help to develop new and potentially more selective inhibitors of this transporter, which is a potent target in cancer therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...