Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO J ; 42(7): e110496, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36843541

ABSTRACT

Aberrant splicing is typically attributed to splice-factor (SF) mutation and contributes to malignancies including acute myeloid leukemia (AML). Here, we discovered a mutation-independent means to extensively reprogram alternative splicing (AS). We showed that the dysregulated expression of eukaryotic translation initiation factor eIF4E elevated selective splice-factor production, thereby impacting multiple spliceosome complexes, including factors mutated in AML such as SF3B1 and U2AF1. These changes generated a splicing landscape that predominantly supported altered splice-site selection for ~800 transcripts in cell lines and ~4,600 transcripts in specimens from high-eIF4E AML patients otherwise harboring no known SF mutations. Nuclear RNA immunoprecipitations, export assays, polysome analyses, and mutational studies together revealed that eIF4E primarily increased SF production via its nuclear RNA export activity. By contrast, eIF4E dysregulation did not induce known SF mutations or alter spliceosome number. eIF4E interacted with the spliceosome and some pre-mRNAs, suggesting its direct involvement in specific splicing events. eIF4E induced simultaneous effects on numerous SF proteins, resulting in a much larger range of splicing alterations than in the case of mutation or dysregulation of individual SFs and providing a novel paradigm for splicing control and dysregulation.


Subject(s)
Alternative Splicing , Leukemia, Myeloid, Acute , Humans , RNA Splicing Factors/metabolism , Eukaryotic Initiation Factor-4E/metabolism , RNA Splicing , Eukaryotic Initiation Factors/genetics , Leukemia, Myeloid, Acute/genetics , Mutation
2.
Cancers (Basel) ; 13(24)2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34944805

ABSTRACT

The translation of RNA into protein is a dynamic process which is heavily regulated during normal cell physiology and can be dysregulated in human malignancies. Its dysregulation can impact selected groups of RNAs, modifying protein levels independently of transcription. Integral to their suitability for translation, RNAs undergo a series of maturation steps including the addition of the m7G cap on the 5' end of RNAs, splicing, as well as cleavage and polyadenylation (CPA). Importantly, each of these steps can be coopted to modify the transcript signal. Factors that bind the m7G cap escort these RNAs through different steps of maturation and thus govern the physical nature of the final transcript product presented to the translation machinery. Here, we describe these steps and how the major m7G cap-binding factors in mammalian cells, the cap binding complex (CBC) and the eukaryotic translation initiation factor eIF4E, are positioned to chaperone transcripts through RNA maturation, nuclear export, and translation in a transcript-specific manner. To conceptualize a framework for the flow and integration of this genetic information, we discuss RNA maturation models and how these integrate with translation. Finally, we discuss how these processes can be coopted by cancer cells and means to target these in malignancy.

3.
J Cell Sci ; 133(14)2020 07 23.
Article in English | MEDLINE | ID: mdl-32576666

ABSTRACT

Staufen1 (STAU1) is an RNA-binding protein involved in the post-transcriptional regulation of mRNAs. We report that a large fraction of STAU1 localizes to the mitotic spindle in colorectal cancer HCT116 cells and in non-transformed hTERT-RPE1 cells. Spindle-associated STAU1 partly co-localizes with ribosomes and active sites of translation. We mapped the molecular determinant required for STAU1-spindle association within the first 88 N-terminal amino acids, a domain that is not required for RNA binding. Interestingly, transcriptomic analysis of purified mitotic spindles revealed that 1054 mRNAs and the precursor ribosomal RNA (pre-rRNA), as well as the long non-coding RNAs and small nucleolar RNAs involved in ribonucleoprotein assembly and processing, are enriched on spindles compared with cell extracts. STAU1 knockout causes displacement of the pre-rRNA and of 154 mRNAs coding for proteins involved in actin cytoskeleton organization and cell growth, highlighting a role for STAU1 in mRNA trafficking to spindle. These data demonstrate that STAU1 controls the localization of subpopulations of RNAs during mitosis and suggests a novel role of STAU1 in pre-rRNA maintenance during mitosis, ribogenesis and/or nucleoli reassembly.


Subject(s)
Cytoskeletal Proteins , RNA , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , Spindle Apparatus/genetics , Spindle Apparatus/metabolism
4.
J Mol Biol ; 432(13): 3881-3897, 2020 06 12.
Article in English | MEDLINE | ID: mdl-32335035

ABSTRACT

Cell cycle is a highly regulated process that is finely coordinated by a plethora of interconnected regulators. In this paper, we report that post-transcriptional mechanisms mediated by the RNA-binding protein Staufen1 (STAU1) are essential for the proliferation of non-transformed cells (hTERT-RPE1 and IMR90). Cell sorting quantification and time-lapse video microscopy using FUCCI-hTERT-RPE1 cells identified the G1/S and G2/M phase transitions of the cell cycle as crucial steps for STAU1 functions. The level of expression of 35 transcripts coding for cell-cycle regulators is up- or down-regulated following STAU1 depletion. Among others, expression of E2F1, a transcription factor essential for the G1/S transition, is decreased in STAU1 depleted cells, dependent on a STAU1-binding site in the 3' untranslated region of E2F1 mRNA. Interestingly, E2F1, in turn, increases STAU1 transcription, highlighting a regulatory loop that enhances expression of both STAU1 and E2F1. Our results indicate that a STAU1-mediatedpost-transcriptional mechanism of gene regulation controls an mRNA regulon involved in decision making during cell-cycle phase transitions and that this mechanism is essential for cell-cycle progression in non-tumor cells.


Subject(s)
Cell Cycle Checkpoints/genetics , Cytoskeletal Proteins/genetics , E2F1 Transcription Factor/genetics , RNA-Binding Proteins/genetics , Telomerase/genetics , Binding Sites/genetics , Cell Proliferation/genetics , Gene Expression Regulation/genetics , HeLa Cells , Humans , RNA, Messenger/genetics , Transcription Factors/genetics
5.
Nucleic Acids Res ; 42(12): 7867-83, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24906885

ABSTRACT

Staufen1 (Stau1) is a ribonucleic acid (RNA)-binding protein involved in the post-transcriptional regulation of gene expression. Recent studies indicate that Stau1-bound messenger RNAs (mRNAs) mainly code for proteins involved in transcription and cell cycle control. Consistently, we report here that Stau1 abundance fluctuates through the cell cycle in HCT116 and U2OS cells: it is high from the S phase to the onset of mitosis and rapidly decreases as cells transit through mitosis. Stau1 down-regulation is mediated by the ubiquitin-proteasome system and the E3 ubiquitin ligase anaphase promoting complex/cyclosome (APC/C). Stau1 interacts with the APC/C co-activators Cdh1 and Cdc20 via its first 88 N-terminal amino acids. The importance of controlling Stau155 levels is underscored by the observation that its overexpression affects mitosis entry and impairs proliferation of transformed cells. Microarray analyses identified 275 Stau1(55)-bound mRNAs in prometaphase cells, an early mitotic step that just precedes Stau1 degradation. Interestingly, several of these mRNAs are more abundant in Stau155-containing complexes in cells arrested in prometaphase than in asynchronous cells. Our results point out for the first time to the possibility that Stau1 participates in a mechanism of post-transcriptional regulation of gene expression that is linked to cell cycle progression in cancer cells.


Subject(s)
Cell Cycle , Cytoskeletal Proteins/metabolism , RNA-Binding Proteins/metabolism , Antigens, CD , Cadherins/metabolism , Cdc20 Proteins/metabolism , Cell Line , Cell Line, Transformed , Cell Proliferation , Cytoskeletal Proteins/chemistry , Down-Regulation , Humans , Mitosis , Proteasome Endopeptidase Complex/metabolism , Protein Structure, Tertiary , RNA, Messenger/metabolism , RNA-Binding Proteins/chemistry , Ubiquitin/metabolism
6.
Proc Natl Acad Sci U S A ; 111(1): 285-90, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24347639

ABSTRACT

The cellular response to highly genotoxic DNA double-strand breaks (DSBs) involves the exquisite coordination of multiple signaling and repair factors. Here, we conducted a functional RNAi screen and identified BAP1 as a deubiquitinase required for efficient assembly of the homologous recombination (HR) factors BRCA1 and RAD51 at ionizing radiation (IR) -induced foci. BAP1 is a chromatin-associated protein frequently inactivated in cancers of various tissues. To further investigate the role of BAP1 in DSB repair, we used a gene targeting approach to knockout (KO) this deubiquitinase in chicken DT40 cells. We show that BAP1-deficient cells are (i) sensitive to IR and other agents that induce DSBs, (ii) defective in HR-mediated immunoglobulin gene conversion, and (iii) exhibit an increased frequency of chromosomal breaks after IR treatment. We also show that BAP1 is recruited to chromatin in the proximity of a single site-specific I-SceI-induced DSB. Finally, we identified six IR-induced phosphorylation sites in BAP1 and showed that mutation of these residues inhibits BAP1 recruitment to DSB sites. We also found that both BAP1 catalytic activity and its phosphorylation are critical for promoting DNA repair and cellular recovery from DNA damage. Our data reveal an important role for BAP1 in DSB repair by HR, thereby providing a possible molecular basis for its tumor suppressor function.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , Gene Expression Regulation, Neoplastic , Homologous Recombination , Neoplasms/metabolism , Tumor Suppressor Proteins/metabolism , Ubiquitin Thiolesterase/metabolism , Animals , BRCA1 Protein/metabolism , Cell Line , Cell Line, Tumor , Chickens , DNA Damage , HEK293 Cells , HeLa Cells , Humans , Immunoglobulins/genetics , MCF-7 Cells , Microscopy, Fluorescence , Mutation , Neoplasms/genetics , Phenotype , Phosphorylation , Rad51 Recombinase , Radiation, Ionizing
7.
Biochem Biophys Res Commun ; 411(2): 265-70, 2011 Jul 29.
Article in English | MEDLINE | ID: mdl-21741359

ABSTRACT

AmyTM is a truncated mutant of the α-amylase of Bacillus stearothermophilus US100. It has been derived from the wild type amylase gene via a reading frame shift, following a tandem duplication of the mutant primer, associated to an Adenine base deletion. AmyTM was composed of 720 nucleotides encoding 240 amino acid residues out of 549 of the wild type. The AmyTM protein was devoided of the three catalytic residues but still retains catalytic activity. It is Ca-independent maltotetraose producing amylase, optimally active at pH 6 and 60°C, under monomeric or multimeric forms. AmyTM is the smallest functional truncated TIM barrel. It contains the ßαßα unit as the minimal subdomain associated to an enzymatic function. The enzymatic activity can, until now, be attributed to the presence of the whole domain B, in the structure of AmyTM. This mutant revealed, for the first time, the regeneration of a catalytic site after its abolition. This fact may be considered as the restoration of a primitive active site, which was lost in the course of evolution toward more stable domains.


Subject(s)
Geobacillus stearothermophilus/enzymology , alpha-Amylases/chemistry , Amino Acid Sequence , Base Sequence , Geobacillus stearothermophilus/genetics , Molecular Sequence Data , Protein Folding , Protein Structure, Secondary , Protein Structure, Tertiary , alpha-Amylases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...