Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 23(5): 6722-30, 2015 Mar 09.
Article in English | MEDLINE | ID: mdl-25836888

ABSTRACT

We report room temperature electroluminescence of tensile-strained germanium microdisks. The strain is transferred into the microdisks using silicon nitride stressors. Carrier injection is achieved with Schottky contacts on n-type doped germanium. We show that a biaxial tensile-strain up to 0.72% can be transferred by optimizing the carrier injection profile. The transferred strain is measured by the electroluminescence spectral red-shift and compared to finite element modeling. We discuss the impact of this strain level to achieve population inversion in germanium.

2.
Opt Express ; 22(1): 399-410, 2014 Jan 13.
Article in English | MEDLINE | ID: mdl-24515000

ABSTRACT

In this work we study, using experiments and theoretical modeling, the mechanical and optical properties of tensile strained Ge microstructures directly fabricated in a state-of-the art complementary metal-oxide-semiconductor fabrication line, using fully qualified materials and methods. We show that these microstructures can be used as active lasing materials in mm-long Fabry-Perot cavities, taking advantage of strain-enhanced direct band gap recombination. The results of our study can be realistically applied to the fabrication of a prototype platform for monolithic integration of near infrared laser sources for silicon photonics.

3.
Opt Lett ; 39(3): 458-61, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24487839

ABSTRACT

We present a simple method to accurately measure the effective thermal resistance of a photonic crystal microcavity. The cavity is embedded between two Schottky contacts forming a metal-semiconductor-metal device. The photocarriers circulating in the device provide a local temperature rise that can be dominated by Joule effect under certain conditions. We show that the effective thermal resistance (R(th)) can be experimentally deduced from the spectral shift of the cavity resonance wavelength measured at different applied bias. We deduce a value of R(th)1.6×10(4) KW(-1) for a microcavity on silicon-on-insulator, which is in good agreement with 3D thermal modeling by finite elements.

SELECTION OF CITATIONS
SEARCH DETAIL
...