Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 25(5)2020 Feb 27.
Article in English | MEDLINE | ID: mdl-32120977

ABSTRACT

Downsizing well-established materials to the nanoscale is a key route to novel functionalities, in particular if different functionalities are merged in hybrid nanomaterials. Hybrid carbon-based hierarchical nanostructures are particularly promising for electrochemical energy storage since they combine benefits of nanosize effects, enhanced electrical conductivity and integrity of bulk materials. We show that endohedral multiwalled carbon nanotubes (CNT) encapsulating high-capacity (here: conversion and alloying) electrode materials have a high potential for use in anode materials for lithium-ion batteries (LIB). There are two essential characteristics of filled CNT relevant for application in electrochemical energy storage: (1) rigid hollow cavities of the CNT provide upper limits for nanoparticles in their inner cavities which are both separated from the fillings of other CNT and protected against degradation. In particular, the CNT shells resist strong volume changes of encapsulates in response to electrochemical cycling, which in conventional conversion and alloying materials hinders application in energy storage devices. (2) Carbon mantles ensure electrical contact to the active material as they are unaffected by potential cracks of the encapsulate and form a stable conductive network in the electrode compound. Our studies confirm that encapsulates are electrochemically active and can achieve full theoretical reversible capacity. The results imply that encapsulating nanostructures inside CNT can provide a route to new high-performance nanocomposite anode materials for LIB.


Subject(s)
Electrochemical Techniques/methods , Ions/chemistry , Lithium/chemistry , Nanotubes, Carbon/chemistry , Cobalt/chemistry , Electric Conductivity , Electric Power Supplies , Electrodes , Ferric Compounds/chemistry , Manganese Compounds/chemistry , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Nanocomposites/chemistry , Nanocomposites/ultrastructure , Nanotubes, Carbon/ultrastructure , Oxides/chemistry , Tin/chemistry
2.
Nanomaterials (Basel) ; 8(8)2018 Jul 28.
Article in English | MEDLINE | ID: mdl-30060566

ABSTRACT

In the present work, different synthesis procedures have been demonstrated to fill carbon nanotubes (CNTs) with Fe1-xNix alloy nanoparticles (x = 0.33, 0.5). CNTs act as templates for the encapsulation of magnetic nanoparticles, and provide a protective shield against oxidation as well as prevent nanoparticles agglomeration. By variation of the reaction parameters, the purity of the samples, degree of filling, the composition and size of filling nanoparticles have been tailored and therefore the magnetic properties. The samples were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Bright-field (BF) TEM tomography, X-ray powder diffraction, superconducting quantum interference device (SQUID) and thermogravimetric analysis (TGA). The Fe1-xNix-filled CNTs show a huge enhancement in the coercive fields compared to the corresponding bulk materials, which make them excellent candidates for several applications such as magnetic storage devices.

3.
Beilstein J Nanotechnol ; 9: 1024-1034, 2018.
Article in English | MEDLINE | ID: mdl-29719754

ABSTRACT

In the present work, we demonstrate different synthesis procedures for filling carbon nanotubes (CNTs) with equimolar binary nanoparticles of the type Fe-Co. The CNTs act as templates for the encapsulation of magnetic nanoparticles and provide a protective shield against oxidation as well as prevent nanoparticle agglomeration. By variation of the reaction parameters, we were able to tailor the sample purity, degree of filling, the composition and size of the filling particles, and therefore, the magnetic properties. The samples were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), superconducting quantum interference device (SQUID) and thermogravimetric analysis (TGA). The Fe-Co-filled CNTs show significant enhancement in the coercive field as compared to the corresponding bulk material, which make them excellent candidates for several applications such as magnetic storage devices.

4.
Sci Rep ; 7(1): 8881, 2017 08 21.
Article in English | MEDLINE | ID: mdl-28827554

ABSTRACT

The investigation of properties of nanoparticles is an important task to pave the way for progress and new applications in many fields of research like biotechnology, medicine and magnetic storage techniques. The study of nanoparticles with ever decreasing size is a challenge for commonly employed methods and techniques. It requires increasingly complex measurement setups, often low temperatures and a size reduction of the respective sensors to achieve the necessary sensitivity and resolution. Here, we present results on how magnetic properties of individual nanoparticles can be measured at room temperature and with a conventional scanning force microscopy setup combined with a co-resonant cantilever magnetometry approach. We investigate individual Co2FeGa Heusler nanoparticles with diameters of the order of 35 nm encapsulated in carbon nanotubes. We observed, for the first time, magnetic switching of these nanoparticles in an external magnetic field by simple laser deflection detection. Furthermore, we were able to deduce magnetic properties of these nanoparticles which are in good agreement with previous results obtained with large nanoparticle ensembles in other experiments. In order to do this, we expand the analytical description of the frequency shift signal in cantilever magnetometry to a more general formulation, taking unaligned sensor oscillation directions with respect to the magnetic field into account.

SELECTION OF CITATIONS
SEARCH DETAIL
...