Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
J Control Release ; 369: 163-178, 2024 May.
Article in English | MEDLINE | ID: mdl-38521168

ABSTRACT

The production of short chain fatty acids (SCFAs) by the colonic microbiome has numerous benefits for human health, including maintenance of epithelial barrier function, suppression of colitis, and protection against carcinogenesis. Despite the therapeutic potential, there is currently no optimal approach for elevating the colonic microbiome's synthesis of SCFAs. In this study, poly(D,l-lactide-co-glycolide) (PLGA) was investigated for this application, as it was hypothesised that the colonic microbiota would metabolise PLGA to its lactate monomers, which would promote the resident microbiota's synthesis of SCFAs. Two grades of spray dried PLGA, alongside a lactate bolus control, were screened in an advanced model of the human colon, known as the M-SHIME® system. Whilst the high molecular weight (Mw) grade of PLGA was stable in the presence of the microbiota sourced from three healthy humans, the low Mw PLGA (PLGA 2) was found to be metabolised. This microbial degradation led to sustained release of lactate over 48 h and increased concentrations of the SCFAs propionate and butyrate. Further, microbial synthesis of harmful ammonium was significantly reduced compared to untreated controls. Interestingly, both types of PLGA were found to influence the composition of the luminal and mucosal microbiota in a donor-specific manner. An in vitro model of an inflamed colonic epithelium also showed the polymer to affect the expression of pro- and anti-inflammatory markers, such as interleukins 8 and 10. The findings of this study reveal PLGA's sensitivity to enzymatic metabolism in the gut, which could be harnessed for therapeutic elevation of colonic SCFAs.


Subject(s)
Fatty Acids, Volatile , Gastrointestinal Microbiome , Polylactic Acid-Polyglycolic Acid Copolymer , Humans , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Gastrointestinal Microbiome/drug effects , Fatty Acids, Volatile/metabolism , Colon/metabolism , Colon/microbiology , Lactic Acid/metabolism , Male , Adult , Female
2.
Nutrients ; 15(19)2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37836513

ABSTRACT

NUTRIOSE® (Roquette, Lestrem, France) is a resistant dextrin with well-established prebiotic effects. This study evaluated the indirect effects of pre-digested NUTRIOSE® on host immune response and gut barrier integrity. Fecal samples from eight healthy donors were inoculated in a Colon-on-a-plate® system (ProDigest, Ghent, Belgium) with or without NUTRIOSE® supplementation. Following 48 h fermentation, colonic suspensions were tested in a Caco-2/THP1-Blue™ co-culture system to determine their effects on gut barrier activity (transepithelial electrical resistance) and immune response following lipopolysaccharide stimulation. Additionally, changes in short-chain fatty acid levels (SCFA) and microbial community composition following a 48 h fermentation in the Colon-on-a-plate® system were measured. Across all donors, immune-mediated intestinal barrier damage was significantly reduced with NUTRIOSE®-supplemented colonic suspensions versus blank. Additionally, IL-6 and IL-10 levels were significantly increased, and the level of the neutrophil chemoattractant IL-8 was significantly decreased with NUTRIOSE®-supplemented colonic suspensions versus blank in the co-culture models following lipopolysaccharide stimulation. These beneficial effects of NUTRIOSE® supplementation were likely due to increased acetate and propionate levels and the enrichment of SCFA-producing bacteria. NUTRIOSE® was well fermented by the colonic bacteria of all eight donors and had protective effects on inflammation-induced disruption of the intestinal epithelial barrier and strong anti-inflammatory effects.


Subject(s)
Dextrins , Lipopolysaccharides , Humans , Fermentation , Lipopolysaccharides/metabolism , Caco-2 Cells , Colon/metabolism , Fatty Acids, Volatile/metabolism , Immunity , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/metabolism
3.
Nutrients ; 15(7)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37049481

ABSTRACT

Fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAPs) cause intestinal discomfort in patients with irritable bowel syndrome (IBS). An enzyme mix (2500 SU invertase, 2400 GalU α-galactosidase, 10,000 ALU ß-galactosidase) optimized for FODMAP digestion, and/or human milk oligosaccharides (HMO) (2'-FL, DFL, and LNnT), were evaluated for effects on microbial community activity and composition in short-term colonic incubations using the fecal microbiota of four patients with IBS-D symptoms under the following test conditions: (i) FODMAP, (ii) pre-digested (with enzyme mix) FODMAP, (iii) FODMAP + HMO, and (iv) pre-digested FODMAP + HMO. Pre-digested FODMAP reduced short-chain fatty acid (SCFA) production versus FODMAP; HMO restored this. A 10-day experiment with the simulator of the human intestinal microbial ecosystem (SHIME®), using fecal samples from two patients with IBS-D, further evaluated these findings. FODMAP resulted in decreased microbial diversity versus blank. Pre-digestion with the enzyme mix restored microbial diversity, improved FODMAP digestibility, and reduced gas pressure versus undigested FODMAP; however, SCFA production decreased. HMO restored SCFA production along with an increase in gas pressure and increased abundance of Lachnospiraceae. When used in combination, the FODMAP enzyme mix and HMO may resolve FODMAP-related IBS symptoms while maintaining a healthy gut microbiome via prebiotic activity.


Subject(s)
Gastrointestinal Microbiome , Irritable Bowel Syndrome , Humans , Ecosystem , Milk, Human , Oligosaccharides , Fatty Acids, Volatile , Digestion
4.
Appl Environ Microbiol ; 89(3): e0188022, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36840551

ABSTRACT

The human gut microbiome contributes crucial bioactive metabolites that support human health and is sensitive to perturbations from the ingestion of alcohol and antibiotics. We interrogated the response and recovery of human gut microbes after acute alcohol or broad-spectrum antibiotic administration in a gut model simulating the luminal and mucosal colonic environment with an inoculated human microbiome. Both alcohol and antibiotic treatments reduced the production of major short-chain fatty acids (SCFAs) (acetate, propionate, and butyrate), which are established modulators of human health. Treatment with a microbial synbiotic restored and enhanced gut function. Butyrate and acetate production increased by up to 29.7% and 18.6%, respectively, relative to untreated, dysbiotic samples. In parallel, treatment led to increases in the relative abundances of beneficial commensal organisms not found in the synbiotic (e.g., Faecalibacterium prausnitzii and the urolithin-producing organism Gordonibacter pamelaeae) as well as species present in the synbiotic (e.g., Bifidobacterium infantis), suggesting synergistic interactions between supplemented and native microorganisms. These results lead us to conclude that functional shifts in the microbiome, evaluated by both metabolite production and specific taxonomic compositional changes, are an appropriate metric to assess microbiome "recovery" following a dysbiosis-inducing disruption. Overall, these findings support the execution of randomized clinical studies to determine whether a microbial synbiotic can help restore microbiome function after a disruption. IMPORTANCE The human gut microbiome is sensitive to disruptions by common stressors such as alcohol consumption and antibiotic treatment. In this study, we used an in vitro system modeling the gut microbiome to investigate whether treatment with a microbial synbiotic can help restore microbiome function after stress. We find that a complex gut community treated with alcohol or antibiotics showed reduced levels of production of short-chain fatty acids, which are critical beneficial molecules produced by a healthy gut microbiota. Treatment of stressed communities with a microbial synbiotic resulted in the recovery of SCFA production as well as an increase in the abundance of beneficial commensal organisms. Our results suggest that treatment with a microbial synbiotic has the potential to restore healthy gut microbiome function after stress and merits further investigation in clinical studies.


Subject(s)
Gastrointestinal Microbiome , Synbiotics , Humans , Gastrointestinal Microbiome/physiology , Anti-Bacterial Agents/pharmacology , Ethanol , Fatty Acids, Volatile/metabolism , Butyrates
5.
Microorganisms ; 10(4)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35456812

ABSTRACT

Functional amino acids supplementation to farm animals is considered to not only be beneficial by regulating intestinal barrier, oxidative stress, and immunity, but potentially also by impacting the gut microbiota. The impact of amino acids on a piglet-derived colonic microbiota was evaluated using a 48-h in vitro batch incubation strategy. The combination of 16S rRNA gene profiling with flow cytometry demonstrated that specific microbial taxa were involved in the fermentation of each of the amino acids resulting in the production of specific metabolites. Branched chain amino acids (leucine, isoleucine, valine) strongly increased branched-chain fatty acids (+23.0 mM) and valerate levels (+3.0 mM), coincided with a marked increase of Peptostreptococcaceae. Further, glutamine and glutamate specifically stimulated acetate (~20 mM) and butyrate (~10 mM) production, relating to a stimulation of a range of families containing known butyrate-producing species (Ruminococcaceae, Oscillospiraceae, and Christensenellaceae). Finally, while tryptophan was only fermented to a minor extent, arginine and lysine specifically increased propionate levels (~2 mM), likely produced by Muribaculaceae members. Overall, amino acids were thus shown to be selectively utilized by microbes originating from the porcine colonic microbiota, resulting in the production of health-related short-chain fatty acids, thus confirming the prebiotic potential of specific functional amino acids.

6.
Front Pharmacol ; 13: 820543, 2022.
Article in English | MEDLINE | ID: mdl-35370677

ABSTRACT

The traditional Chinese medicine (TCM)-Chaihu Shugan Formula (CSF), consisting of several Chinese botanical drugs like Bupleurum, is derived from the ancient Chinese pharmacopeia. It has been used for more than thousands of years in various suboptimal health statuses and diseases induced by chronic stress based on empirical therapy. Recent studies confirm the role of CSF in the development of many diseases, including depression, stress-induced hepatic injury and tumors. However, little has been known about the mechanisms behind the health effects of CSF. Here, we investigate the influence of CSF on the modulation of the simulated colonic microbiota of five healthy donors, gut barrier integrity, and intestinal immunity by combining the simulator of the human intestinal microbial ecosystem (SHIME®) technology platform with co-culture of intestinal and immune cells. This approach revealed that CSF stimulated the production of SCFA (acetate, propionate and butyrate) across donors while significantly lowering the production of branched SCFA (bSCFA). In terms of community composition, CSF stimulated a broad spectrum of health-related Bifidobacterium species, which are potent acetate and lactate producers. At the same time, it lowered the abundance of opportunistic pathogenic Escherichia coli. Later, we explore the effect of colonic fermentation of CSF on the gut barrier and intestinal immunity in the Caco-2/THP1-blue™ cell co-culture model. Based on the study using SHIME technology platform, CSF showed protective effects on inflammation-induced intestinal epithelial barrier disruption in all donors. Also, the treatment of CSF showed pronounced anti-inflammatory properties by strongly inducing anti-inflammatory cytokines IL-6 and IL-10 and reducing pro-inflammatory cytokine TNF-α. These findings demonstrate a significant modulatory effect of CSF on intestinal gut microbiota. CSF-microbial fermentation products improved the gut barrier and controlled intestinal inflammation.

7.
FEMS Microbiol Lett ; 368(21-24)2021 12 17.
Article in English | MEDLINE | ID: mdl-34849765

ABSTRACT

A short-chain fructo-oligosaccharide (sc-FOS) was tested in a simulator of the human gut microbial ecosystem (SHIME) in vitro model to quantify its prebiotic effects according to Prebiotic Index (PI) and Measure of prebiotic effect (MPE) equations. FossenceTM, (sc-FOS, 0.5%) was fermented in a simulated human proximal colonic condition, using a fecal inoculum from a healthy individual. We analysed the pH reduction, substrate utilization, lactate and short-chain fatty acid (SCFA) production and microbial community modulation. Microbial fermentation of sc-FOS strongly reduced the media pH indicating the production of lactate and SCFA with accumulation of lactate and enhanced levels of acetate (34.38 ± 0.38 mM), propionate (20.93 ± 0.56 mM) and butyrate (4.93 ± 0.03 mM) compared to 18.46 ± 0.20 mM, 6.24 ± 0.10 mM and 3.3 ± 0.06 mM in the blank, respectively. Total SCFA production in test media was 61.91 ± 0.87 mM compared to 33.65 ± 0.36 mM in blank and the contribution of free-sugars present in sc-FOS to SCFAs was negligible. Modulation of the microbial community was analysed through 16S rRNA sequencing and we found that sc-FOS greatly stimulated the beneficial bacteria such as Bifidobacteria and Lactobacillus. We report the PI and MPE values for FossenceTM, as 14.9 and 0.01 respectively at the end of 24 h, which is an indicator of a strong prebiotic effect.


Subject(s)
Fermentation , Microbiota , Oligosaccharides , Prebiotics , Bacteria/genetics , Bacteria/metabolism , Colon/metabolism , Fatty Acids, Volatile/metabolism , Feces/chemistry , Humans , Hydrogen-Ion Concentration , Lactates/metabolism , Oligosaccharides/metabolism , Pilot Projects , Prebiotics/analysis , RNA, Ribosomal, 16S/genetics
8.
Nutrients ; 13(11)2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34836151

ABSTRACT

Fermentation is an ancient food preservation process, and fermented products have been traditionally consumed in different cultures worldwide over the years. The interplay between human gut microbiota, diet and host health is widely recognized. Diet is one of the main factors modulating gut microbiota potentially with beneficial effects on human health. Fermented dairy products have received much attention, but other sources of probiotic delivery through food received far less attention. In this research, a combination of in vitro tools mimicking colonic fermentation and the intestinal epithelium have been applied to study the effect of different pasteurized and non-pasteurized water kefir products on gut microbiota, epithelial barrier function and immunomodulation. Water kefir increased beneficial short-chain fatty acid production at the microbial level, reduced detrimental proteolytic fermentation compounds and increased Bifidobacterium genus abundance. The observed benefits are enhanced by pasteurization. Pasteurized products also had a significant effect at the host level, improving inflammation-induced intestinal epithelial barrier disruption and increasing IL-10 and IL-1ß compared to the control condition. Our data support the potential health benefits of water kefir and demonstrate that pasteurization, performed to prolong shelf life and stability of the product, also enhanced these benefits.


Subject(s)
Beverages/analysis , Cytokines/biosynthesis , Gastrointestinal Microbiome , Kefir , Water/pharmacology , Colon/metabolism , Colon/microbiology , Fatty Acids, Volatile/biosynthesis , Fermentation , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Pasteurization , Permeability
9.
Nutrients ; 13(9)2021 Sep 18.
Article in English | MEDLINE | ID: mdl-34579126

ABSTRACT

The human gut microbiota has been linked to the health status of the host. Modulation of human gut microbiota through pro- and prebiotic interventions has yielded promising results; however, the effect of novel prebiotics, such as chitin-glucan, on gut microbiota-host interplay is still not fully characterized. We assessed the effect of chitin-glucan (CG) and chitin-glucan plus Bifidobacterium breve (CGB) on human gut microbiota from the luminal and mucosal environments in vitro. Further, we tested the effect of filter-sterilized fecal supernatants from CG and CGB fermentation for protective effects on inflammation-induced barrier disruption and cytokine production using a co-culture of enterocytes and macrophage-like cells. Overall, CG and CGB promote health-beneficial short-chain fatty acid production and shift human gut microbiota composition, with a consistent effect increasing Roseburia spp. and butyrate producing-bacteria. In two of three donors, CG and CGB also stimulated Faecalibacterium prausniitzi. Specific colonization of B. breve was observed in the lumen and mucosal compartment; however, no synergy was detected for different endpoints when comparing CGB and CG. Both treatments included a significant improvement of inflammation-disrupted epithelial barrier and shifts on cytokine production, especially by consistent increase in the immunomodulatory cytokines IL10 and IL6.


Subject(s)
Chitin/pharmacology , Cytokines/biosynthesis , Gastrointestinal Microbiome/drug effects , Glucans/pharmacology , Intestinal Mucosa/drug effects , Prebiotics/administration & dosage , Bifidobacterium breve/physiology , Caco-2 Cells , Coculture Techniques , Enterocytes , Fatty Acids, Volatile/biosynthesis , Feces/microbiology , Fermentation , Gastrointestinal Microbiome/physiology , Humans , Intestinal Mucosa/physiology , Probiotics/administration & dosage , THP-1 Cells
10.
Microorganisms ; 9(9)2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34576876

ABSTRACT

Increasing insight into the impact of the gut microbiota on human health has sustained the development of novel prebiotic ingredients. This exploratory study evaluated the prebiotic potential of baobab fruit pulp powder, which consists of pectic polysaccharides with unique composition as compared to other dietary sources, given that it is rich in low methoxylated homogalacturonan (HG). After applying dialysis procedures to remove simple sugars from the product (simulating their absorption along the upper gastrointestinal tract), 48 h fecal batch incubations were performed. Baobab fruit pulp powder boosted colonic acidification across three simulated human adult donors due to the significant stimulation of health-related metabolites acetate (+18.4 mM at 48 h), propionate (+5.5 mM at 48 h), and to a lesser extent butyrate (0.9 mM at 48 h). Further, there was a trend of increased lactate levels (+2.7 mM at 6h) and reduced branched chain fatty acid (bCFA) levels (-0.4 mM at 48 h). While Bacteroidetes levels increased for all donors, donor-dependent increases in Bifidobacteria, Lactobacilli, and Firmicutes were observed, stressing the potential interindividual differences in microbial composition modulation upon Baobab fruit pulp powder treatment. Overall, Baobab fruit pulp powder fermentation displayed features of selective utilization by host microorganisms and, thus, has promising prebiotic potential (also in comparison with the 'gold standard' prebiotic inulin). Further research will be required to better characterize this prebiotic potential, accounting for the interindividual differences, while aiming to unravel the potential resulting health benefits.

11.
Pathogens ; 10(8)2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34451391

ABSTRACT

Clostridioides difficile (formerly Clostridium difficile) infection (CDI) is one of the most common hospital-acquired infections, which is often triggered by a dysbiosed indigenous gut microbiota (e.g., upon antibiotic therapy). Symptoms can be as severe as life-threatening colitis. The current study assessed the antipathogenic potential of human milk oligosaccharides (HMOs), i.e., 2'-O-fucosyllactose (2'FL), lacto-N-neotetraose (LNnT), and a combination thereof (MIX), against C. difficile ATCC 9689 using in vitro gut models that allowed the evaluation of both direct and, upon microbiota modulation, indirect effects. During a first 48 h fecal batch study, dysbiosis and CDI were induced by dilution of the fecal inoculum. For each of the three donors tested, C. difficile levels strongly decreased (with >4 log CFU/mL) upon treatment with 2'FL, LNnT and MIX versus untreated blanks, coinciding with increased acetate/Bifidobacteriaceae levels. Interindividual differences among donors at an intermediate time point suggested that the antimicrobial effect was microbiota-mediated rather than being a direct effect of the HMOs. During a subsequent 11 week study with the PathogutTM model (specific application of the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®)), dysbiosis and CDI were induced by clindamycin (CLI) treatment. Vancomycin (VNC) treatment cured CDI, but the further dysbiosis of the indigenous microbiota likely contributed to CDI recurrence. Upon co-supplementation with VNC, both 2'FL and MIX boosted microbial activity (acetate and to lesser extent propionate/butyrate). Moreover, 2'FL avoided CDI recurrence, potentially because of increased secondary bile acid production. Overall, while not elucidating the exact antipathogenic mechanisms-of-action, the current study highlights the potential of HMOs to combat CDI recurrence, help the gut microbial community recover after antibiotic treatment, and hence counteract the adverse effects of antibiotic therapies.

12.
Front Nutr ; 8: 700571, 2021.
Article in English | MEDLINE | ID: mdl-34277691

ABSTRACT

Human gut microbiota has a fundamental role in human health, and diet is one of the most relevant factors modulating the gut microbial ecosystem. Fiber, fat, proteins, and micronutrients can shape microbial activity and structure. Much information is available on the role of defined prebiotic fibers on gut microbiota, but less known are the effects of intact dietary fiber sources on healthy gut ecosystems. This research investigated in vitro the short-term effect of 22 commercially available food sources of dietary fiber on gut microbiota activity [pH, gas, short-chain fatty acids (SCFA), branched fatty acids (BCFA), lactate] and specific composition of Firmicutes, Bacteroidetes, bifidobacteria, and lactobacilli populations. More than 80% (19 of 22) of the products were highly fermentable and induced SCFAs production, with specific product differences. In general, all the whole grain cereals had a similar effect on gut microbiota modulation, inducing acetate and butyrate production and increasing bifidobacteria levels. Incorporating and comparing a large variety of products, including "non-conventional" fiber sources, like konjac, bamboo fiber, or seeds fiber, about which there is little information, contributes to our knowledge on the modulatory activity of diverse food fiber sources on human gut microbiota, and therefore potential health promotion through dietary fiber diversification.

13.
Nutrients ; 13(3)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33668823

ABSTRACT

Because of the recognized health benefits of breast milk, it is recommended as the sole nutrition source during the first 6 months of life. Among the bioactive components are human milk oligosaccharides (HMOs) that exert part of their activity via the gut microbiota. Here, we investigated the gut microbiota fermentation of HMO 2'fucosyllactose (2'-FL), using two in vitro models (48 h fecal incubations and the long-term mucosal simulator of the human intestinal microbial ecosystem [M-SHIME®]) with fecal samples from 3-month-old breastfed (BF) infants as well as 2-3 year old toddlers. The short-term model allowed the screening of five donors for each group and provided supportive data for the M-SHIME® study. A key finding was the strong and immediate increase in the relative abundance of Bifidobacteriaceae following 2'-FL fermentation by both the BF infant and toddler microbiota in the M-SHIME®. At the metabolic level, while decreasing branched-chain fatty acids, 2'-FL strongly increased acetate production together with increases in the health-related propionate and butyrate whilst gas production only mildly increased. Notably, consistently lower gas production was observed with 2'-FL fermentation as compared to lactose, suggesting that reduced discomfort during the dynamic microbiome establishment in early life may be an advantage along with the bifidogenic effect observed.


Subject(s)
Gastrointestinal Microbiome/drug effects , Lactose/pharmacology , Milk, Human/chemistry , Trisaccharides/pharmacology , Bifidobacterium , Breast Feeding , Humans , Infant , Infant Nutritional Physiological Phenomena
14.
Int J Pharm X ; 3: 100087, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34977556

ABSTRACT

We report here the potential role of a 4-strain probiotic suspension for use with patients with Parkinson's disease (PD). Stool samples from a group of three patients with diagnosed PD were used to create microbiotas in an in-vitro gut model. The effects of dosing with an oral probiotic suspension (Symprove) on bacterial composition and metabolic activity in the microbiotas was evaluated over 48 h and compared with healthy controls. Additionally, the effect of probiotic dosing on epithelial tight-junction integrity, production of inflammatory markers and wound healing were evaluated in cell culture models. In general, the relative proportions of the main bacterial phyla in the microbiotas of PD patients differed from those of healthy subjects, with levels of Firmicutes raised and levels of Bacteroidetes reduced. Dosing with probiotic resulted in a change in bacterial composition in the microbiotas over a 48 h period. Several other indicators of gut health changed upon dosing with the probiotic; production of short chain fatty acids (SCFAs) and lactate was stimulated, levels of anti-inflammatory cytokines (IL-6, IL-10) increased and levels of pro-inflammatory cytokines and chemokines (MCP-1 and IL-8) decreased. Tight junction integrity was seen to improve with probiotic dosing and wound healing was seen to occur faster than a control. The data suggest that if development and/or progression of PD is influenced by gut microbiota dysbiosis then supplementation of the diet with a properly formulated probiotic may be a useful adjunct to standard treatment in clinic.

15.
Nutrients ; 12(8)2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32751149

ABSTRACT

BACKGROUND: This study evaluated the impact of Bifidobacterium animalis ssp. lactis CNCM I-3446, Bovine Milk-derived OligoSaccharides (BMOS) and their combination on infant gut microbiota in vitro. In addition, a novel strategy consisting of preculturing B. lactis with BMOS to further enhance their potential synbiotic effects was assessed. METHOD: Short-term fecal batch fermentations (48 h) were used to assess the microbial composition and activity modulated by BMOS alone, B. lactis grown on BMOS or dextrose alone, or their combinations on different three-month-old infant microbiota. RESULTS: BMOS alone significantly induced acetate and lactate production (leading to pH decrease) and stimulated bifidobacterial growth in 10 donors. A further in-depth study on two different donors proved B. lactis ability to colonize the infant microbiota, regardless of the competitiveness of the environment. BMOS further enhanced this engraftment, suggesting a strong synbiotic effect. This was also observed at the microbiota activity level, especially in a donor containing low initial levels of bifidobacteria. In this donor, preculturing B. lactis with BMOS strengthened further the early modulation of microbiota activity observed after 6 h. CONCLUSION: This study demonstrated the strong synbiotic effect of BMOS and B. lactis on the infant gut microbiota, and suggests a strategy to improve its effectiveness in an otherwise low-Bifidobacterium microbiota.


Subject(s)
Bifidobacterium animalis , Milk/chemistry , Oligosaccharides/pharmacology , Probiotics/pharmacology , Synbiotics , Animals , Cattle , Feces/microbiology , Female , Fermentation/drug effects , Gastrointestinal Microbiome/drug effects , Humans , Infant , Male , RNA, Ribosomal, 16S/analysis
16.
Int J Pharm ; 587: 119648, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32679260

ABSTRACT

Symprove, a multi-strain probiotic, has been shown to exert a mild anti-inflammatory effect in patients with ulcerative colitis (UC). We examined stool samples from 3 patients with UC in order to create microbiotas in an in-vitro gut model. The effects of Symprove on bacterial diversity and metabolic activity in the microbiotas was evaluated over 48 h. In addition, the influence of probiotic dosing on epithelial tight-junction integrity, production of inflammatory markers and wound healing were evaluated in cell culture models. The relative proportions of the main bacterial phyla in UC patients differed from those of healthy subjects studied previously; levels of Firmicutes were lowered and levels of Bacteroidetes were raised. Addition of Symprove changed the bacterial composition in the microbiotas over a 48 h period. Several other factors generally implicated in good gut health changed after dosing with probiotic; production of short chain fatty acids (SCFAs) and lactate was stimulated, levels of anti-inflammatory cytokines (IL-6, IL-10) increased, levels of pro-inflammatory cytokines and chemokines (MCP-1 and IL-8) decreased, epithelial tight junction integrity improved and wound healing occurred faster than a control. The results imply it is not the simple addition of probiotic bacteria that improves gut health. Rather, the probiotic bacteria generate lactate, which then stimulates growth of commensal gut bacteria, raising SCFA levels (particularly butyrate). The increased butyrate concentration positively influences inflammation response and time of wound healing.


Subject(s)
Colitis, Ulcerative , Gastrointestinal Microbiome , Probiotics , Colitis, Ulcerative/drug therapy , Fatty Acids, Volatile , Humans
17.
Nutrients ; 12(7)2020 Jun 29.
Article in English | MEDLINE | ID: mdl-32610452

ABSTRACT

Modulation of the gut microbiome as a means to improve human health has recently gained increasing interest. In this study, it was investigated whether cRG-I, a carrot-derived pectic polysaccharide, enriched in rhamnogalacturonan-I (RG-I) classifies as a potential prebiotic ingredient using novel in vitro models. First, digestion methods involving α-amylase/brush border enzymes demonstrated the non-digestibility of cRG-I by host-derived enzymes versus digestible (starch/maltose) and non-digestible controls (inulin). Then, a recently developed short-term (48 h) colonic incubation strategy was applied and revealed that cRG-I fermentation increased levels of health-promoting short-chain fatty acids (SCFA; mainly acetate and propionate) and lactate comparable but not identical to the reference prebiotic inulin. Upon upgrading this fermentation model by inclusion of a simulated mucosal environment while applying quantitative 16S-targeted Illumina sequencing, cRG-I was additionally shown to specifically stimulate operational taxonomic units (OTUs) related to health-associated species such as Bifidobacterium longum, Bifidobacterium adolescentis, Bacteroides dorei, Bacteroides ovatus, Roseburia hominis, Faecalibacterium prausnitzii, and Eubacterium hallii. Finally, in a novel model to assess host-microbe interactions (Caco-2/peripheral blood mononuclear cells (PBMC) co-culture) fermented cRG-I increased barrier integrity while decreasing markers for inflammation. In conclusion, by using novel in vitro models, cRG-I was identified as a promising prebiotic candidate to proceed to clinical studies.


Subject(s)
Daucus carota/chemistry , Digestion/drug effects , Gastrointestinal Microbiome/drug effects , Pectins/pharmacology , Prebiotics/analysis , Bifidobacterium/metabolism , Colon/metabolism , Electric Impedance , Fermentation , Host Microbial Interactions/drug effects , Humans , Intestinal Mucosa/drug effects , Prebiotics/microbiology
18.
Nutrients ; 12(6)2020 May 26.
Article in English | MEDLINE | ID: mdl-32466615

ABSTRACT

: Background: Prebiotics used as a dietary supplement, stimulate health-related gut microbiota (e.g., bifidobacteria, lactobacilli, etc.). This study evaluated potential prebiotic effects of an artichoke aqueous dry extract (AADE) using in vitro gut model based on the Simulator of Human Intestinal Microbial Ecosystem (SHIME®). METHODS: Short-term colonic fermentations (48 h) of AADE, fructo-oligosaccharides (FOS), and a blank were performed. Microbial metabolites were assessed at 0, 6, 24, and 48 h of colonic incubation via measuring pH, gas pressure, lactate, ammonium, and short-chain fatty acids (SCFAs) levels. Community composition was assessed via targeted qPCRs. RESULTS: After 24 and 48 h of incubation, bifidobacteria levels increased 25-fold with AADE (p < 0.05) and >100-fold with FOS (p < 0.05) compared to blank. Lactobacillus spp. levels only tended to increase with AADE, whereas they increased 10-fold with FOS. At 6 h, pH decreased with AADE and FOS and remained stable until 48 h; however, gas pressure increased significantly till the end of study. Acetate, propionate, and total SCFA production increased significantly with both at all time-points. Lactate levels initially increased but branched SCFA and ammonium levels remained low till 48 h. CONCLUSION: AADE displayed prebiotic potential by exerting bifidogenic effects that stimulated production of health-related microbial metabolites, which is potentially due to inulin in AADE.


Subject(s)
Cynara scolymus/chemistry , Inflorescence/chemistry , Plant Extracts/pharmacology , Prebiotics/analysis , Bifidobacterium/drug effects , Colon/metabolism , Colon/microbiology , Dietary Supplements , Ecosystem , Fatty Acids, Volatile/metabolism , Fermentation , Gastrointestinal Microbiome/drug effects , Humans , Inulin , Lactobacillus/drug effects , Oligosaccharides/pharmacology , Propionates/metabolism
19.
PLoS One ; 8(8): e71360, 2013.
Article in English | MEDLINE | ID: mdl-23977026

ABSTRACT

Different regions of the bacterial 16S rRNA gene evolve at different evolutionary rates. The scientific outcome of short read sequencing studies therefore alters with the gene region sequenced. We wanted to gain insight in the impact of primer choice on the outcome of short read sequencing efforts. All the unknowns associated with sequencing data, i.e. primer coverage rate, phylogeny, OTU-richness and taxonomic assignment, were therefore implemented in one study for ten well established universal primers (338f/r, 518f/r, 799f/r, 926f/r and 1062f/r) targeting dispersed regions of the bacterial 16S rRNA gene. All analyses were performed on nearly full length and in silico generated short read sequence libraries containing 1175 sequences that were carefully chosen as to present a representative substitute of the SILVA SSU database. The 518f and 799r primers, targeting the V4 region of the 16S rRNA gene, were found to be particularly suited for short read sequencing studies, while the primer 1062r, targeting V6, seemed to be least reliable. Our results will assist scientists in considering whether the best option for their study is to select the most informative primer, or the primer that excludes interferences by host-organelle DNA. The methodology followed can be extrapolated to other primers, allowing their evaluation prior to the experiment.


Subject(s)
Bacteria/genetics , DNA Primers/chemistry , Genes, rRNA , Genetic Variation , RNA, Ribosomal, 16S/genetics , Bacteria/classification , Evolution, Molecular , Gene Library , Phylogeny , Sequence Analysis, DNA
20.
Microbiology (Reading) ; 159(Pt 10): 2097-2108, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23920133

ABSTRACT

The last decade has shown an increased interest in the utilization of bacteria for applications ranging from bioremediation to wastewater purification and promotion of plant growth. In order to extend the current number of micro-organism mediated applications, a continued quest for new agents is required. This study focused on the genus Pseudomonas, which is known to harbour strains with a very diverse set of interesting properties. The aim was to identify growth media that allow retrieval of a high Pseudomonas diversity, as such increasing the chance of isolating isolates with beneficial properties. Three cultivation media: trypticase soy agar (TSA), potato dextrose agar (PDA) and Pseudomonas isolation agar (PIA) were evaluated for their abilities to grow Pseudomonas strains. TSA and PDA were found to generate the largest Pseudomonas diversity. However, communities obtained with both media overlapped. Communities obtained with PIA, on the other hand, were unique. This indicated that the largest diversity is obtained by sampling from either PDA or TSA and from PIA in parallel. To evaluate biodiversity of the isolated Pseudomonas members on the media, an appropriate biomarker had to be identified. Hence, an introductory investigation of the taxonomic resolution of the 16S rRNA, rpoD, gyrB and rpoB genes was performed. The rpoD gene sequences not only had a high phylogenetic content and the highest taxonomic resolution amongst the genes investigated, it also had a gene phylogeny that related well with that of the 16S rRNA gene.


Subject(s)
Biodiversity , Culture Media/chemistry , DNA-Directed RNA Polymerases/genetics , Pseudomonas/classification , Pseudomonas/growth & development , Sigma Factor/genetics , Cluster Analysis , DNA Gyrase/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Environmental Microbiology , Molecular Sequence Data , Phylogeny , Pseudomonas/genetics , Pseudomonas/isolation & purification , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...