Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 31(23): 33663-33684, 2024 May.
Article in English | MEDLINE | ID: mdl-38687451

ABSTRACT

The use of biofuels has grown in the last decades as a consequence of the direct environmental impacts of fossil fuel use. Elucidating structure, diversity, species interactions, and assembly mechanisms of microbiomes is crucial for understanding the influence of environmental disturbances. However, little is known about how contamination with biofuel/petrofuel blends alters the soil microbiome. Here, we studied the dynamics in the soil microbiome structure and composition of four field areas under long-term contamination with biofuel/fossil fuel blends (ethanol 10% and gasoline 90%-E10; ethanol 25% and gasoline 75%-E25; soybean biodiesel 20% and diesel 80%-B20) submitted to different bioremediation treatments along a temporal gradient. Soil microbiomes from biodiesel-polluted areas exhibited higher richness and diversity index values and more complex microbial communities than ethanol-polluted areas. Additionally, monitored natural attenuation B20-polluted areas were less affected by perturbations caused by bioremediation treatments. As a consequence, once biostimulation was applied, the degradation was slower compared with areas previously actively treated. In soils with low diversity and richness, the impact of bioremediation treatments on the microbiomes was greater, and as a result, the hydrocarbon degradation extent was higher. The network analysis showed that all abundant keystone taxa corresponded to well-known degraders, suggesting that the abundant species are core targets for biostimulation in soil remediation processes. Altogether, these findings showed that the knowledge gained through the study of microbiomes in contaminated areas may help design and conduct optimized bioremediation approaches, paving the way for future rationalized and efficient pollutant mitigation strategies.


Subject(s)
Biodegradation, Environmental , Biofuels , Microbiota , Soil Microbiology , Soil , Soil/chemistry , Soil Pollutants/metabolism , Gasoline
2.
Bioprocess Biosyst Eng ; 46(3): 393-428, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35943595

ABSTRACT

Petroleum hydrocarbons and toxic metals are sources of environmental contamination and are harmful to all ecosystems. Fungi have metabolic and morphological plasticity that turn them into potential prototypes for technological development in biological remediation of these contaminants due to their ability to interact with a specific contaminant and/or produced metabolites. Although fungal bioinoculants producing enzymes, biosurfactants, polymers, pigments and organic acids have potential to be protagonists in mycoremediation of hydrocarbons and toxic metals, they can still be only adjuvants together with bacteria, microalgae, plants or animals in such processes. However, the sudden accelerated development of emerging technologies related to the use of potential fungal bioproducts such as bioinoculants, enzymes and biosurfactants in the remediation of these contaminants, has boosted fungal bioprocesses to achieve higher performance and possible real application. In this review, we explore scientific and technological advances in bioprocesses related to the production and/or application of these potential fungal bioproducts when used in remediation of hydrocarbons and toxic metals from an integral perspective of biotechnological process development. In turn, it sheds light to overcome existing technological limitations or enable new experimental designs in the remediation of these and other emerging contaminants.


Subject(s)
Petroleum , Animals , Biodegradation, Environmental , Ecosystem , Hydrocarbons , Organic Chemicals
3.
Genomics ; 113(6): 3523-3532, 2021 11.
Article in English | MEDLINE | ID: mdl-34400240

ABSTRACT

Serratia marcescens is a global spread nosocomial pathogen. This rod-shaped bacterium displays a broad host range and worldwide geographical distribution. Here we analyze an international collection of this multidrug-resistant, opportunistic pathogen from 35 countries to infer its population structure. We show that S. marcescens comprises 12 lineages; Sm1, Sm4, and Sm10 harbor 78.3% of the known environmental strains. Sm5, Sm6, and Sm7 comprise only human-associated strains which harbor smallest pangenomes, genomic fluidity and lowest levels of core recombination, indicating niche specialization. Sm7 and Sm9 lineages exhibit the most concerning resistome; blaKPC-2 plasmid is widespread in Sm7, whereas Sm9, also an anthropogenic-exclusive lineage, presents highest plasmid/lineage size ratio and plasmid-diversity encoding metallo-beta-lactamases comprising blaNDM-1. The heterogeneity of resistance patterns of S. marcescens lineages elucidated herein highlights the relevance of surveillance programs, using whole-genome sequencing, to provide insights into the molecular epidemiology of carbapenemase producing strains of this species.


Subject(s)
Serratia marcescens , beta-Lactamases , Anti-Bacterial Agents , Humans , Plasmids/genetics , Serratia marcescens/genetics , Whole Genome Sequencing , beta-Lactamases/genetics
4.
Bioprocess Biosyst Eng ; 44(10): 2003-2034, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34131819

ABSTRACT

Biosurfactants are in demand by the global market as natural commodities that can be added to commercial products or use in environmental applications. These biomolecules reduce the surface/interfacial tension between fluid phases and exhibit superior stability to chemical surfactants under different physico-chemical conditions. Biotechnological production of biosurfactants is still emerging. Fungi are promising producers of these molecules with unique chemical structures, such as sophorolipids, mannosylerythritol lipids, cellobiose lipids, xylolipids, polyol lipids and hydrophobins. In this review, we aimed to contextualize concepts related to fungal biosurfactant production and its application in industry and the environment. Concepts related to the thermodynamic and physico-chemical properties of biosurfactants are presented, which allows detailed analysis of their structural and application. Promising niches for isolating biosurfactant-producing fungi are presented, as well as screening methodologies are discussed. Finally, strategies related to process parameters and variables, simultaneous production, process optimization through statistical and genetic tools, downstream processing and some aspects of commercial products formulations are presented.


Subject(s)
Biotechnology/methods , Fungi/metabolism , Surface-Active Agents/metabolism , Lipid Metabolism , Surface Tension , Thermodynamics
5.
Eng. sanit. ambient ; 25(4): 607-617, jul.-ago. 2020. tab, graf
Article in Portuguese | LILACS-Express | LILACS | ID: biblio-1133801

ABSTRACT

RESUMO O presente estudo tem como objetivo avaliar o efeito da aplicação de diferentes concentrações de biossólido de lodo de esgoto, submetido a tratamento térmico, no estabelecimento de espécies herbáceas (aveia preta, ervilhaca e azevém) e nos atributos químicos e microbiológicos de um solo degradado pela mineração de carvão. O experimento foi instalado em área degradada pela mineração de carvão, localizada no munícipio de Treviso (SC), sendo os tratamentos compostos pelas concentrações de 0, 6,25, 100, 250 e 500 Mg ha-1 de biossólido, em parcelas de 2×2 m. Foram cultivadas espécies de aveia preta, ervilhaca e azevém de maneira consorciada, avaliando-se os parâmetros das plantas e os atributos químicos do solo nas profundidades 0-5, 5-10 e 10-20 cm. O biossólido proporcionou a elevação do pH do solo e o aumento dos teores disponíveis de P, K e carbono orgânico total e não influenciou na colonização micorrízica, na respiração basal do solo e na nodulação radicular. O uso do resíduo biossólido como substrato em áreas degradadas é uma alternativa para sua disposição final pela economia ao utilizá-lo como fertilizante, além dos benefícios ambientais, associados ao seu uso.


ABSTRACT This study aims to evaluate the effects of different concentrations of sewage sludge biosolid concentrations, submitted to thermal treatment, in the establishment of herbaceous species (black oats, vetches, and ryegrass) and in the chemical and microbiological attributes of a soil degraded by coal mining. The experiment was installed in an area degraded by coal mining, in Treviso/SC, with treatments composed of concentrations of 0; 6.25; 100; 250; and 500 Mg ha-1 of biosolids, in 2×2 m plots. Species of black oat, vetch, and ryegrass were grown in a consortium manner, evaluating the plant parameters and chemical attributes of the soil at depths 0-5, 5-10, and 10-20 cm. The biosolids provided improvements in soil fertility, such as pH elevation, increased levels available of P, K, and total organic carbon, in addition to not influencing mycorrhizal colonization, basal soil respiration, and root nodulation. The use of biosolid waste as a substrate in degraded areas is an alternative to its final disposal due to the economy when using it as a fertilizer, in addition to the environmental benefits associated with its use.

6.
PLoS One ; 13(5): e0196984, 2018.
Article in English | MEDLINE | ID: mdl-29738553

ABSTRACT

Like many other species of trees native to the Brazilian Mata Atlântica (Atlantic Forest), the Myrtaceae, such as the Red Araza (Psidium cattleianum Sabine), are widely cited as arbuscular mycorrhizal formers. Nevertheless, recent studies show evidence that Myrtaceae from different tropical, subtropical and neotropical ecosystems can also prompt the formation of ectomycorrhizae, indicating that this species' ectomycorrhizal status should be further explored. Because of this, this research effort studied the in vitro interaction between the Red Araza and two ectomycorrhizal fungi isolates, belonging to the Pisolithus microcarpus (D17) and Scleroderma citrinum (UFSC-Sc133) species. An analysis was performed to determine the formation of ectomycorrhizal structures, or lack thereof, and the developmental differences between the in vitro mycorrhized and non-mycorrhized plants. The analysis proved that indeed an ectomycorrhizal association was developed between the Red Araza, and the D17 and UFSC-Sc133 isolates, a fact never before registered in the existing literature. After an in vitro period of 110 days, it was confirmed that the D17 and UFSC-Sc133 isolates formed mycorrhizal colonization of 91.6% and 15.7%, respectively. Furthermore, both isolates also promoted root thickening, and the formation of a fungal mantle and a Hartig net. However, when compared to the Control plants, the fungal isolates did not contribute to an increase in the development of the subject plants, possibly due to the specific experimental conditions used, such as a high humidity environment and high availability of nutrients in the symbiotic substrate.


Subject(s)
Mycorrhizae/growth & development , Plant Roots/microbiology , Psidium/microbiology , Symbiosis/genetics , Brazil , Ecosystem , Forests , Psidium/growth & development
7.
Plant Physiol Biochem ; 122: 46-56, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29175636

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) improve plant ability to uptake P and tolerate heavy metals. This study aimed to evaluate the effect of available P and the inoculation of Rhizophagus clarus in a Cu-contaminated soil (i) on the activity of acid phosphatases (soil and plant), the presence of glomalin, and (ii) in the biochemical and physiological status of Mucuna cinereum. A Typic Hapludalf soil artificially contaminated by adding 60 mg kg-1 Cu was used in a 3 × 2 factorial design with three replicates. Treatments consisted of three P levels: 0, 40, and 100 mg kg-1 P. Each P treatment level was inoculated (+AMF)/non-inoculated (-AMF) with 200 spores of R. clarus per pot, and plants grown for 45 days. The addition of at least 40 mg kg-1 P and the inoculation of plants with R. clarus proved to be efficient to reduce Cu phytotoxicity and increase dry matter yield. Mycorrhization and phosphate fertilization reduced the activity of enzymes regulating oxidative stress (SOD and POD), and altered the chlorophyll a fluorescence parameters, due to the lower stress caused by available Cu. These results suggest a synergism between the application of P and the inoculation with R. clarus, favoring the growth of M. cinereum in a Cu-contaminated soil. This study shows that AMF inoculation represents an interesting alternative to P fertilization to improve plant development when exposed to excess Cu.


Subject(s)
Copper/pharmacology , Disease Resistance/drug effects , Glomeromycota/growth & development , Mucuna , Phosphorus/metabolism , Soil Pollutants/pharmacology , Mucuna/metabolism , Mucuna/microbiology , Oxidative Stress/drug effects
8.
Arch Microbiol ; 199(7): 991-1001, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28382474

ABSTRACT

Coal open pit mining in the South of Santa Catarina state (Brazil) was inappropriately developed, affecting approximately 6.700 ha. Re-vegetation is an alternative for the recovery of these areas. Furthermore, the use of herbaceous legumes inoculated with nitrogen fixing bacteria is motivated due to the difficulty implementing a vegetation cover in these areas, mainly due to low nutrient availability. Therefore, the aim of this work was to evaluate, among 16 autochthonous rhizobia isolated from the coal mining areas, those with the greatest potential to increase growth of the herbaceous legumes Vicia sativa and Calopogonium mucunoides. Tests were conducted in greenhouse containing 17 inoculation treatments (16 autochthonous rhizobia + Brazilian recommended strain for each plant species), plus two treatments without inoculation (with and without mineral nitrogen). After 60 days, nodulation, growth, N uptake, and symbiotic efficiency were evaluated. Isolates characterization was assessed by the production of indole acetic acid, ACC deaminase, siderophores, and inorganic phosphate solubilization. The classification of the isolates was performed by 16 S rDNA gene sequencing. Only isolates UFSC-M4 and UFSC-M8 were able to nodulate C. mucunoides. Among rhizobia capable of nodulating V. sativa, only UFSC-M8 was considered efficient. It was found the presence of more than one growth-promoting attributes in the same organism, and isolate UFSC-M8 presented all of them. Isolates were classified as belonging to Rhizobium, Burkholderia and Curtobacterium. The results suggest the inoculation of Vicia sativa with strain UFSC-M8, classified as Rhizobium sp., as a promising alternative for the revegetation of coal mining degraded areas.


Subject(s)
Actinobacteria/classification , Burkholderia/classification , Fabaceae/microbiology , Rhizobium/classification , Root Nodules, Plant/microbiology , Vicia sativa/microbiology , Actinobacteria/genetics , Actinobacteria/isolation & purification , Brazil , Burkholderia/genetics , Burkholderia/isolation & purification , Carbon-Carbon Lyases/metabolism , Coal , DNA, Ribosomal/genetics , Indoleacetic Acids/metabolism , Nitrogen Fixation , RNA, Ribosomal, 16S/genetics , Rhizobium/genetics , Rhizobium/isolation & purification , Symbiosis/genetics , Vicia sativa/growth & development
9.
Appl Microbiol Biotechnol ; 101(3): 1013-1024, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27687991

ABSTRACT

The study had the objective of examining the aspects involved in the cultivation of ectomycorrhizal fungi for the production of commercially sustainable inoculant to attend the demands of the seedling nursery industry. It focused on certain parameters, such as the oxygen consumption levels, during the cultivation of the ectomycorrhizal fungus Rhizopogon nigrescens CBMAI 1472, which was performed in a 5-L airlift bioreactor. The dynamic method was employed to determine the volumetric coefficient for the oxygen transfer (k L a) and the specific oxygen uptake rate (Q O2 ). The results indicate that specific growth rates (µ X ) and oxygen consumption decline rapidly with time, affected mainly by increases in biomass concentration (X). Increases in X are obtained primarily by increases in the size of pellets that are formed, altering, consequently, the cultivation dynamics. This is the result of natural increases in transferring resistance that are observed in these environments. Therefore, to avoid critical conditions that affect viability and the productivity of the process, particular settings are discussed.


Subject(s)
Basidiomycota/growth & development , Basidiomycota/metabolism , Bioreactors , Oxygen Consumption , Oxygen/metabolism , Basidiomycota/isolation & purification , Biomass , Mycorrhizae/growth & development , Mycorrhizae/metabolism
10.
Int J Phytoremediation ; 19(2): 113-120, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27491701

ABSTRACT

Vetiver (Chrysopogon zizanioides) is a fast-growing, high biomass producing plant employed for environmental rehabilitation. The study evaluated the effects of arbuscular mycorrhizal fungi (AMF) on the growth and trace element phytoextracting capabilities of vetiver in a substrate containing coalmine wastes in Southern Brazil. AMF included Acaulospora colombiana, Acaulospora morrowiae, Acaulospora scrobiculata, Dentiscutata heterogama, Gigaspora margarita, and Rhizophagus clarus. Among those, A. colombiana, G. margarita, and R. clarus promoted higher growth. AMF stimulated average increments in the accumulated P of 82% (roots), 194% (shoots first harvest-90 days) and 300% (shoots second harvest-165 days) and affected the phytoextraction of trace elements by vetiver, with larger concentrations in the roots. Plants inoculated with A. colombiana, A. morrowiae, and A. scrobiculata, in addition to the control, presented the highest levels of Cu and Zn in the roots. Overall, G. margarita stimulated the highest production of biomass, and, therefore, showed the most significant levels of trace elements in the plants. This work shows the benefits of certain AMF (especially A. morrowiae, G. margarita, and R. clarus) for the production of biomass and P uptake by vetiver, demonstrating the potential of those species for the rehabilitation of coal-mine-degraded soils.


Subject(s)
Chrysopogon/metabolism , Glomeromycota/metabolism , Mycorrhizae/metabolism , Soil Pollutants/metabolism , Trace Elements/metabolism , Biodegradation, Environmental , Brazil , Coal , Mining
11.
World J Microbiol Biotechnol ; 31(11): 1655-64, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26250548

ABSTRACT

In recent decades, the concentration of trace elements has increased in soil and water, mainly by industrialization and urbanization. Recovery of contaminated areas is generally complex. In that respect, microorganisms can be of vital importance by making significant contributions towards the establishment of plants and the stabilization of impacted areas. Among the available strategies for environmental recovery, bioremediation and phytoremediation outstand. Arbuscular mycorrhizal fungi (AMF) are considered the most important type of mycorrhizae for phytoremediation. AMF have broad occurrence in contaminated soils, and evidences suggest they improve plant tolerance to excess of certain trace elements. In this review, the use of AMF in phytoremediation and mechanisms involved in their trace element tolerance are discussed. Additionally, we present some techniques used to study the retention of trace elements by AMF, as well as a summary of studies showing major benefits of AMF for phytoremediation.


Subject(s)
Mycorrhizae/physiology , Soil Pollutants/analysis , Trace Elements/metabolism , Biodegradation, Environmental , Plant Roots/microbiology , Plants/microbiology , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...