Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Trials ; 23(1): 774, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36104785

ABSTRACT

BACKGROUND: COVID-19 pneumonia is associated with the development of acute respiratory distress syndrome (ARDS) displaying some typical histological features. These include diffuse alveolar damage with extensive pulmonary coagulation activation. This results in fibrin deposition in the microvasculature, leading to the formation of hyaline membranes in the air sacs. Well-conducted clinical trials have found that nebulised heparin limits pulmonary fibrin deposition, attenuates progression of ARDS, hastens recovery and is safe in non-COVID ARDS. Unfractionated heparin also inactivates the SARS-CoV-2 virus and prevents entry into mammalian cells. Nebulisation of heparin may therefore limit fibrin-mediated lung injury and inhibit pulmonary infection by SARS-CoV-2. Based on these findings, we designed the CHARTER-Ireland Study, a phase 1b/2a randomised controlled study of nebulised heparin in patients requiring advanced respiratory support for COVID-19 pneumonia. METHODS: This is a multi-centre, phase 1b/IIa, randomised, parallel-group, open-label study. The study will randomise 40 SARs-CoV-2-positive patients receiving advanced respiratory support in a critical care area. Randomisation will be via 1:1 allocation to usual care plus nebulised unfractionated heparin 6 hourly to day 10 while receiving advanced respiratory support or usual care only. The study aims to evaluate whether unfractionated heparin will decrease the procoagulant response associated with ARDS up to day 10. The study will also assess safety and tolerability of nebulised heparin as defined by number of severe adverse events; oxygen index and respiratory oxygenation index of intubated and unintubated, respectively; ventilatory ratio; and plasma concentration of interleukin (IL)-1ß, IL6, IL-8, IL-10 and soluble tumour necrosis factor receptor 1, C-reactive protein, procalcitonin, ferritin, fibrinogen and lactate dehydrogenase as well as the ratios of IL-1ß/IL-10 and IL-6/IL-10. These parameters will be assessed on days 1, 3, 5 and 10; time to separation from advanced respiratory support, time to discharge from the intensive care unit and number tracheostomised to day 28; and survival to days 28 and 60 and to hospital discharge, censored at day 60. Some clinical outcome data from our study will be included in the international meta-trials, CHARTER and INHALE-HEP. DISCUSSION: This trial aims to provide evidence of potential therapeutic benefit while establishing safety of nebulised heparin in the management of ARDS associated with SARs-CoV-2 infection. TRIAL REGISTRATION: ClinicalTrials.gov NCT04511923 . Registered on 13 August 2020. Protocol version 8, 22/12/2021 Protocol identifier: NUIG-2020-003 EudraCT registration number: 2020-003349-12 9 October 2020.


Subject(s)
Acute Lung Injury , COVID-19 , Respiratory Distress Syndrome , Acute Lung Injury/diagnosis , Acute Lung Injury/etiology , Animals , Fibrin , Heparin/adverse effects , Humans , Interleukin-10 , Ireland , Mammals , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/drug therapy , SARS-CoV-2
2.
Semin Respir Crit Care Med ; 43(3): 379-389, 2022 06.
Article in English | MEDLINE | ID: mdl-35679873

ABSTRACT

The definition of acute respiratory distress syndrome (ARDS), has evolved since it was first described in 1967 by Ashbaugh and Petty to the current "Berlin" definition of ARDS developed in 2012 by an expert panel, that provided clarification on the definition of "acute," and on the cardiac failure criteria. It expanded the definition to include patients receiving non-invasive ventilation, and removed the term "acute lung injury" and added a requirement of patients to be receiving a minimum 5 cmH2O expiratory pressure.Since 2012, a series of observational cohort studies have generated insights into the utility and robustness of this definition. This review will examine novel insights into the epidemiology of ARDS, failures in ARDS diagnosis, the role of lung imaging in ARDS, the novel ARDS cohort that is not invasively ventilated, lung compliance profiles in patients with ARDS, sex differences that exist in ARDS management and outcomes, the progression of ARDS following initial diagnosis, and the clinical profile and outcomes of confirmed versus resolved ARDS. Furthermore, we will discuss studies that challenge the utility of distinguishing ARDS from other causes of acute hypoxemic respiratory failure (AHRF) and identify issues that may need to be addressed in a revised definition.


Subject(s)
Acute Lung Injury , Respiratory Distress Syndrome , Respiratory Insufficiency , Female , Humans , Male , Observational Studies as Topic , Prospective Studies , Respiration, Artificial/methods , Respiratory Distress Syndrome/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...