Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Autoimmun ; 138: 103051, 2023 07.
Article in English | MEDLINE | ID: mdl-37224733

ABSTRACT

Tolerogenic dendritic cells play a critical role in promoting antigen-specific tolerance via dampening of T cell responses, induction of pathogenic T cell exhaustion and antigen-specific regulatory T cells. Here we efficiently generate tolerogenic dendritic cells by genetic engineering of monocytes with lentiviral vectors co-encoding for immunodominant antigen-derived peptides and IL-10. These transduced dendritic cells (designated DCIL-10/Ag) secrete IL-10 and efficiently downregulate antigen-specific CD4+ and CD8+ T cell responses from healthy subjects and celiac disease patients in vitro. In addition, DCIL-10/Ag induce antigen-specific CD49b+LAG-3+ T cells, which display the T regulatory type 1 (Tr1) cell gene signature. Administration of DCIL-10/Ag resulted in the induction of antigen-specific Tr1 cells in chimeric transplanted mice and the prevention of type 1 diabetes in pre-clinical disease models. Subsequent transfer of these antigen-specific T cells completely prevented type 1 diabetes development. Collectively these data indicate that DCIL-10/Ag represent a platform to induce stable antigen-specific tolerance to control T-cell mediated diseases.


Subject(s)
Diabetes Mellitus, Type 1 , Interleukin-10 , Animals , Mice , Antigens , Dendritic Cells/metabolism , Diabetes Mellitus, Type 1/therapy , Diabetes Mellitus, Type 1/metabolism , Immune Tolerance , Interleukin-10/genetics , Interleukin-10/metabolism , T-Lymphocytes, Regulatory/metabolism , Humans , Celiac Disease
2.
Comput Biol Med ; 122: 103863, 2020 07.
Article in English | MEDLINE | ID: mdl-32658739

ABSTRACT

ApreciseKUre is a multi-purpose digital platform facilitating data collection, integration and analysis for patients affected by Alkaptonuria (AKU), an ultra-rare autosomal recessive genetic disease. We present an ApreciseKUre plugin, called AKUImg, dedicated to the storage and analysis of AKU histopathological slides, in order to create a Precision Medicine Ecosystem (PME), where images can be shared among registered researchers and clinicians to extend the AKU knowledge network. AKUImg includes a new set of AKU images taken from cartilage tissues acquired by means of a microscopic technique. The repository, in accordance to ethical policies, is publicly available after a registration request, to give to scientists the opportunity to study, investigate and compare such precious resources. AKUImg is also integrated with a preliminary but accurate predictive system able to discriminate the presence/absence of AKU by comparing histopatological affected/control images. The algorithm is based on a standard image processing approach, namely histogram comparison, resulting to be particularly effective in performing image classification, and constitutes a useful guide for non-AKU researchers and clinicians.


Subject(s)
Alkaptonuria , Alkaptonuria/diagnostic imaging , Cartilage/diagnostic imaging , Databases, Factual , Ecosystem , Humans , Precision Medicine
SELECTION OF CITATIONS
SEARCH DETAIL
...