Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oral Health ; 5: 1335648, 2024.
Article in English | MEDLINE | ID: mdl-38736462

ABSTRACT

Background: Head and neck squamous cell carcinoma (HNSCCs) is a common cancer type with a high mortality rate and poor prognosis. Recent studies have focused on the role of immune checkpoints in HNSCC progression and in their potential use as prognostic markers and immunotherapeutic candidates. Some immune checkpoints, such as PD-1 and PD-L1, have been studied thoroughly in HNSCC. Other molecules, such as indoleamine 2,3-dioxygenase 1 (IDO1), have been investigated minimally. Methods: IDO1 expression, prognostic potential, and association with the immune profile of HNSCC were explored using online databases, including GEPIA, UALCAN, TIMER2.0, cBioPortal, and LinkedOmics, which utilize TCGA datasets and are freely available for use. For validation purposes, seven pairs of primary and metastatic HNSCC were immunostained for IDO1. Results: Our analysis revealed significantly higher expression of IDO1 in HNSCC, especially in HPV+ SCCs compared with healthy control tissue. However, IDO1 expression showed weak to no prognostic potential for overall and disease-free survival in HNSCC. IDO1 expression in HNSCC was positively correlated with several immune-related molecules, including most of the immune checkpoints. Additionally, GO enrichment analysis revealed that several immune-related pathways are positively correlated with IDO1 expression in HNSCC, such as response to type I interferon and lymphocyte-mediated immunity pathways. Finally, IDO1 expression positively correlated with infiltration of most of the immune cells in HNSCC, such as CD4+ T cells, CD8+ T cells, M1 and M2 macrophages, dendritic cells, and B cells. Conclusion: IDO1 expression is closely correlated with the immune profile of the HNSCC. This observation should be explored further to elucidate the potential of targeting IDO1 as a novel immunotherapeutic approach for HNSCC.

2.
Pharmaceutics ; 15(12)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38140077

ABSTRACT

The design, production, and characterisation of tissue-engineered scaffolds made of polylactic-co-glycolic acid (PLGA), polycaprolactone (PCL) and their blends obtained through electrospinning (ES) or solvent casting/particulate leaching (SC) manufacturing techniques are presented here. The polymer blend composition was chosen to always obtain a prevalence of one of the two polymers, in order to investigate the contribution of the less concentrated polymer on the scaffolds' properties. Physical-chemical characterization of ES scaffolds demonstrated that tailoring of fibre diameter and Young modulus (YM) was possible by controlling PCL concentration in PLGA-based blends, increasing the fibre diameter from 0.6 to 1.0 µm and reducing the YM from about 22 to 9 MPa. SC scaffolds showed a "bubble-like" topography, caused by the porogen spherical particles, which is responsible for decreasing the contact angles from about 110° in ES scaffolds to about 74° in SC specimens. Nevertheless, due to phase separation within the blend, solvent-casted samples displayed less reproducible properties. Furthermore, ES samples were characterised by 10-fold higher water uptake than SC scaffolds. The scaffolds suitability as iPSCs culturing support was evaluated using XTT assay, and pluripotency and integrin gene expression were investigated using RT-PCR and RT-qPCR. Thanks to their higher wettability and appropriate YM, SC scaffolds seemed to be superior in ensuring high cell viability over 5 days, whereas the ability to maintain iPSCs pluripotency status was found to be similar for ES and SC scaffolds.

SELECTION OF CITATIONS
SEARCH DETAIL
...