Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 29(41): 62312-62329, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35397723

ABSTRACT

The effects of the COVID-19 lockdown on deposition and surface water chemistry were investigated in an area south of the Alps. Long-term data provided by the monitoring networks revealed that the deposition of sulfur and nitrogen compounds in this area has stabilized since around 2010; in 2020, however, both concentrations and deposition were significantly below the average values of the previous decade for SO4 and NO3. Less evident changes were observed for NH4 and base cation. The estimated decrease of deposition in 2020 with respect to the previous decade was on average - 54% and - 46% for SO4 and NO3, respectively. The lower deposition of SO4 and NO3 recorded in 2020 was caused by the sharp decrease of SO2 and particularly of NOx air concentrations mainly due to the mobility restrictions consequent to the COVID-19 lockdown. The limited effects on NH4 deposition can be explained by the fact that NH3 emission was not affected by the lockdown, being mainly related to agricultural activities. A widespread response to the decreased deposition of S and N compounds was observed in a group of pristine freshwater sites, with NO3 concentrations in 2020 clearly below the long-term average. The rapid chemical recovery observed at freshwater sites in response to the sharp decrease of deposition put in evidence the high resilience potential of freshwater ecosystems in pristine regions and demonstrated the great potential of emission reduction policy in producing further substantial ameliorations of the water quality at sensitive sites.


Subject(s)
Air Pollutants , COVID-19 , Air Pollutants/analysis , Communicable Disease Control , Ecosystem , Environmental Monitoring/methods , Humans
2.
J Chromatogr A ; 1118(1): 56-61, 2006 Jun 16.
Article in English | MEDLINE | ID: mdl-16620857

ABSTRACT

Studies of inorganic carbon cycle in natural waters provide important information on the biological productivity and buffer capacity. Determination of total inorganic carbon, alkalinity and dissolved carbon dioxide gives an indication of the balance between photosynthesis and respiration by biota, both within the water column and sediments, and carbon dioxide transfers from the water column to the atmosphere. There are few methods to measure and distinguish the different forms of inorganic carbon, but all require a measure or an indirect quantification of total inorganic carbon. A direct measurement of TIC in water is made possible by the introduction of electrolytic generated hydroxide eluent in ion chromatography which allows to detect a chromatographic peak for carbonate. The advantage of this method is that all the inorganic forms of carbon are converted in carbonate at eluent pH and can be detected as a single peak by conductivity detection. Repeatability of carbonate peak was evaluated at different levels from 0.02 to 6 mequiv.l(-1) both in high purity water and in real samples and ranged from 1 to 9%. The calibration curve was not linear and has to be fitted by a quadratic curve. Limit of detection was estimated to be 0.02 mequiv.l(-1). Accuracy has been estimated by comparing ion chromatography method with total inorganic carbon calculated from alkalinity and pH. The correlation between the two methods was good (R(2)=0.978, n=141). The IC method has been applied to different typologies of surface waters (alpine and subalpine lakes and rivers) characterised by different chemical characteristics (alkalinity from 0.05 to 2 mequiv.l(-1) and pH from 6.7 to 8.5) and low total organic carbon concentrations. This analytical method allowed to describe the distribution of TIC along the water column of two Italian deep lakes.


Subject(s)
Carbon Compounds, Inorganic/analysis , Chromatography, Ion Exchange/methods , Fresh Water/analysis , Algorithms , Calibration , Fresh Water/chemistry , Hydrogen-Ion Concentration , Reproducibility of Results , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...