Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Food Funct ; 9(11): 5975-5988, 2018 Nov 14.
Article in English | MEDLINE | ID: mdl-30379166

ABSTRACT

Rabbit gastric extract (RGE) is a source of gastric enzymes for in vitro digestion studies. While its gastric lipase activity has been characterized and compared to other lipases, its pepsin activity has not been studied. We measured pepsin activity in RGE using both hemoglobin and azocoll as substrates, and identified the protein separated by SDS-PAGE as a type II-4 mature pepsin of 328 amino acid residues using Edman sequencing, LC-MS/MS analysis and intact mass measurement. As a proof-of-concept that RGE was suitable for in vitro digestion of both proteins and lipids, it was used for studying the proteolysis of ß-casein under conditions mimicking the early stages of intragastric digestion. ß-Casein was displayed either in solution or at the surface of a ß-casein-stabilized rapeseed oil emulsion to investigate the impact of lipids and lipolysis on proteolysis. Proteolysis of ß-casein was quantified based on the kinetics of ß-casein disappearance, the identification of various peptides generated upon digestion and their variation with time. The results obtained with RGE were highly similar to those obtained with equivalent amounts of porcine pepsin used as a reference standard. Digestion of ß-casein was slower when it was displayed at the oil-water interface and some degradation peptides were transiently observed at higher levels and for a longer time than with ß-casein in solution, or accumulated upon digestion. N-terminal sequencing of the main isolated peptides revealed a sequential action of pepsin starting from the hydrophobic C-terminal end of ß-casein, which was impaired by the interaction of ß-casein with lipids.


Subject(s)
Caseins/metabolism , Gastric Juice/metabolism , Pepsin A/metabolism , Amino Acid Sequence , Amino Acids/metabolism , Animals , Emulsions , Gastric Mucosa/metabolism , Lipase/metabolism , Lipid Metabolism , Lipolysis , Proteolysis , Rabbits , Tandem Mass Spectrometry
2.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(10 Pt A): 1025-1034, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28694218

ABSTRACT

The cDNA encoding human gastric lipase (HGL) was integrated into the genome of Pichia pastoris using the pGAPZα A transfer vector. The HGL signal peptide was replaced by the yeast α-factor to achieve an efficient secretion. Active rHGL was produced by the transformed yeast but its levels and stability were dependent on the pH. The highest activity was obtained upon buffering the culture medium at pH5, a condition that allowed preserving enzyme activity over time. A large fraction (72±2%) of secreted rHGL remained however bound to the yeast cells, and was released by washing the cell pellet with an acid glycine-HCl buffer (pH2.2). This procedure allowed establishing a first step of purification that was completed by size exclusion chromatography. N-terminal sequencing and MALDI-ToF mass spectrometry revealed that rHGL was produced in its mature form, with a global mass of 50,837±32Da corresponding to a N-glycosylated form of HGL polypeptide (43,193Da). rHGL activity was characterized as a function of pH, various substrates and in the presence of bile salts and pepsin, and was found similar to native HGL, except for slight changes in pH optima. We then studied by site-directed mutagenesis the role of three key residues (K4, E225, R229) involved in salt bridges stabilizing the lid domain that controls the access to the active site and is part of the interfacial recognition site. Their substitution has an impact on the pH-dependent activity of rHGL and its relative activities on medium and long chain triglycerides.


Subject(s)
Gene Expression , Lipase/biosynthesis , Pichia/metabolism , Amino Acid Substitution , Catalytic Domain , Enzyme Stability , Humans , Lipase/genetics , Mutation, Missense , Pichia/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Substrate Specificity
3.
Food Funct ; 7(1): 30-45, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26527368

ABSTRACT

The development of in vitro digestion models relies on the availability of in vivo data such as digestive enzyme levels and pH values recorded in the course of meal digestion. The variations of these parameters along the GI tract are important for designing dynamic digestion models but also static models for which the choice of representative conditions of the gastric and intestinal conditions is critical. Simulating gastric digestion with a static model and a single set of parameters is particularly challenging because the variations in pH and enzyme concentration occurring in the stomach are much broader than those occurring in the small intestine. A review of the literature on this topic reveals that most models of gastric digestion use very low pH values that are not representative of the fed conditions. This is illustrated here by showing the variations in gastric pH as a function of meal gastric emptying instead of time. This representation highlights those pH values that are the most relevant for testing meal digestion in the stomach. Gastric lipolysis is still largely ignored or is performed with microbial lipases. In vivo data on gastric lipase and lipolysis have however been collected in humans and dogs during test meals. The biochemical characterization of gastric lipase has shown that this enzyme is rather unique among lipases: (i) stability and activity in the pH range 2 to 7 with an optimum at pH 4-5.4; (ii) high tensioactivity that allows resistance to bile salts and penetration into phospholipid layers covering TAG droplets; (iii) sn-3 stereospecificity for TAG hydrolysis; and (iv) resistance to pepsin. Most of these properties have been known for more than two decades and should provide a rational basis for the replacement of gastric lipase by other lipases when gastric lipase is not available.


Subject(s)
Digestion , Lipase , Models, Biological , Animals , Dogs , Gastric Emptying , Humans , Hydrogen-Ion Concentration , Hydrolysis , Intestines , Kinetics , Lipase/analysis , Lipase/chemistry , Lipase/metabolism , Lipolysis , Models, Molecular , Molecular Structure , Pepsin A/metabolism , Stomach/enzymology , Substrate Specificity , Triglycerides/metabolism
4.
J Chromatogr A ; 1216(37): 6543-8, 2009 Sep 11.
Article in English | MEDLINE | ID: mdl-19671473

ABSTRACT

A general and easily accessible method for the extraction followed by the simultaneous separation and quantitative determination of triacylglycerols, diacylglycerols, monoacylglycerols and free fatty acids has been improved and optimized based on existing protocols using liquid-phase extraction and thin-layer chromatography coupled to flame ionization detection (TLC/FID Iatroscan). After lipid extraction in the presence of a suitable new synthetic internal standard, namely CholE1, a single elution step using n-heptane/diethyl ether/formic acid (55:45:1, v/v/v) was applied. This method was validated in line with international bioanalytical method validation guidelines using two different matrix systems: purified water and human gastro-intestinal fluid. Overall, the assay was found to have high levels of precision with coefficients of variation ranging from 1.48% to 11.0% and accuracy ranging from -13.3% to +5.79% RE. The confidence limits of the lipid mean recovery rates varied between 89.9% and 104%. This method is therefore highly suitable for quantifying the lipolysis products generated in vitro during the hydrolysis of various fats and oils by digestive lipases, as well as those collected from the gastro-intestinal tract in the course of human clinical studies on lipid digestion.


Subject(s)
Cholesterol/analogs & derivatives , Ethylene Glycols , Lipids/analysis , Lipolysis , Analytic Sample Preparation Methods/standards , Chromatography, Thin Layer , Flame Ionization , Gastrointestinal Contents/chemistry , Humans , Lipids/standards , Reference Standards , Triglycerides/metabolism
5.
Clin Gastroenterol Hepatol ; 3(1): 28-38, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15645402

ABSTRACT

BACKGROUND & AIMS: The contribution of human gastric lipase (HGL) to the overall lipolysis process in chronic pancreatitis (CP), as well as the relative pancreatic enzyme levels, rarely are addressed. This study was designed to quantify pancreatic and extrapancreatic enzyme output, activity, and stability in CP patients vs. healthy volunteers. METHODS: Healthy volunteers (n = 6), mild CP patients (n = 5), and severe (n = 7) CP patients were intubated with gastric and duodenal tubes before the administration of a test meal. HGL, human pancreatic lipase (HPL), chymotrypsin, and amylase concentrations were assessed in gastric and duodenal samples by measuring the respective enzymatic activities. Intragastric and overall lipolysis levels at the angle of Treitz were estimated based on quantitative analysis of lipolysis products. Similar analyses were performed on duodenal contents incubated ex vivo for studying enzyme stability and evolution of lipolysis. RESULTS: Although HPL, chymotrypsin, and amylase outputs all were extremely low, HGL outputs in patients with severe CP (46.8 +/- 31.0 mg) were 3-4-fold higher than in healthy controls (13.3 +/- 13.8 mg). Intragastric lipolysis did not increase, however, in patients with severe CP, probably because of the rapid decrease in the pH level of the gastric contents caused by a higher gastric acid secretion. HGL remains active and highly stable in the acidic duodenal contents of CP patients, and, overall, can achieve a significant lipolysis of the dietary triglycerides (30% of the control values) in the absence of HPL. CONCLUSIONS: Although all pancreatic enzyme secretions are simultaneously reduced in severe CP, gastric lipase can compensate partly for the loss of pancreatic lipase but not normalize overall lipolytic activity.


Subject(s)
Amylases/metabolism , Chymotrypsin/metabolism , Gastrointestinal Tract/enzymology , Lipase/metabolism , Lipolysis/physiology , Pancreatitis/enzymology , Adult , Case-Control Studies , Chronic Disease , Digestion/physiology , Gastric Emptying/physiology , Humans , Middle Aged , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL
...