Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 49(3): 638-650, 2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31819930

ABSTRACT

New neutral bis(alkyl) Sc and Y complexes [N,Npy,N-]Ln(CH2SiMe3)2(THF)n [n = 0, Ln = Sc (1Sc), Y (1Y); n = 1, Ln = Y (1YTHF)] stabilized by a tridentate monoanionic amidopyridinate ligand were straightforwardly prepared by alkane elimination, upon mixing ligand [N,Npy,N-]H and metal precursor Ln(CH2SiMe3)3(THF)2 in toluene at 0 °C. Depending on the work-up conditions, yttrium bis(alkyl)s were isolated as either a pentacoordinate Lewis base free complex [N,Npy,N-]Y(CH2SiMe3)2 (1Y) or as a hexacoordinate THF adduct [N,Npy,N-]Y(CH2SiMe3)2THF (1YTHF). For the smaller Sc ion the only solvent-free complex [N,Npy,N-]Y(CH2SiMe3)2 (1Sc) was isolated as a pentacoordinate species irrespective of the reaction/work-up/crystallization conditions applied. Complexes 1Ln (Ln = Y, Sc) and 1YTHF were scrutinized as pre-catalysts in ternary catalytic systems Ln/borate/AliBu3 (borate = [HNMe2Ph][B(C6F5)4] or [Ph3C][B(C6F5)4]), applied to isoprene (IP) polymerization, providing moderate activity albeit high selectivity with predominant formation of 1,4-cis polyisoprene (up to 99%). The same complexes proved to be effcient catalysts also for the intermolecular hydrolelementation of styrene with various EH sustrates (pyrrolidine, morpholine, Ph2PH, PhPH2, PhSH) affording linear anti-Markovnikov addition products exclusively. After a preliminary activation by B(C6F5)3, selected bis(alkyl) complexes from this series have been finally used as valuable pre-catalysts for the CO2 hydrosylilation to CH4 in the presence of organosilanes as reducing agents (PhMe2SiH, PhSiH3, Et2MeSiH).

2.
J Mater Chem B ; 6(33): 5335-5342, 2018 Sep 07.
Article in English | MEDLINE | ID: mdl-32254499

ABSTRACT

Graphene and graphene substrates display huge potential as material interfaces for devices and biomedical tools targeting the modulation or recovery of brain functionality. However, to be considered reliable neural interfaces, graphene-derived substrates should properly interact with astrocytes, favoring their growth and avoiding adverse gliotic reactions. Indeed, astrocytes are the most abundant cells in the human brain and they have a crucial physiological role to maintain its homeostasis and modulate synaptic transmission. In this work, we describe a new strategy based on the chemical modification of graphene oxide (GO) with a synthetic phospholipid (PL) to improve interaction of GO with brain astroglial cells. The PL moieties were grafted on GO sheets through polymeric brushes obtained by atom-transfer radical-polymerization (ATRP) between acryloyl-modified PL and GO nanosheets modified with a bromide initiator. The adhesion of primary rat cortical astrocytes on GO-PL substrates increased by about three times with respect to that on glass substrates coated with standard adhesion agents (i.e. poly-d-lysine, PDL) as well as with respect to that on non-functionalized GO. Moreover, we show that astrocytes seeded on GO-PL did not display significant gliotic reactivity, indicating that the material interface did not cause a detrimental inflammatory reaction when interacting with astroglial cells. Our results indicate that the reported biomimetic approach could be applied to neural prosthesis to improve cell colonization and avoid glial scar formation in brain implants. Additionally, improved adhesion could be extremely relevant in devices targeting neural cell sensing/modulation of physiological activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...