Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Nanotechnology ; 26(40): 405603, 2015 Oct 09.
Article in English | MEDLINE | ID: mdl-26377604

ABSTRACT

Controlling the number of layers of graphene grown by chemical vapor deposition is crucial for large scale graphene application. We propose here an etching process of graphene which can be applied immediately after growth to control the number of layers. We use nickel (Ni) foil at high temperature (T = 900 °C) to produce multilayer-AB-stacked-graphene (MLG). The etching process is based on annealing the samples in a hydrogen/argon atmosphere at a relatively low temperature (T = 450 °C) inside the growth chamber. The extent of etching is mainly controlled by the annealing process duration. Using Raman spectroscopy we demonstrate that the number of layers was reduced, changing from MLG to few-layer-AB-stacked-graphene and in some cases to randomly oriented few layer graphene near the substrate. Furthermore, our method offers the significant advantage that it does not introduce defects in the samples, maintaining their original high quality. This fact and the low temperature our method uses make it a good candidate for controlling the layer number of already grown graphene in processes with a low thermal budget.

2.
Nanoscale ; 7(17): 7896-905, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25856730

ABSTRACT

Atomically-thin, inherently 2D semiconductors offer thickness scaling of nanoelectronic devices and excellent response to light for low-power versatile applications. Using small exfoliated flakes, advanced devices and integrated circuits have already been realized, showing great potential to impact nanoelectronics. Here, high-quality single-crystal MoSe2 is grown by molecular beam epitaxy on AlN(0001)/Si(111), showing the potential for scaling up growth to low-cost, large-area substrates for mass production. The MoSe2 layers are epitaxially aligned with the aluminum nitride (AlN) lattice, showing a uniform, smooth surface and interfaces with no reaction or intermixing, and with sufficiently high band offsets. High-quality single-layer MoSe2 is obtained, with a direct gap evidenced by angle-resolved photoemission spectroscopy and further confirmed by Raman and intense room temperature photoluminescence. The successful growth of high-quality MoSe2/Bi2Se3 multilayers on AlN shows promise for novel devices exploiting the non-trivial topological properties of Bi2Se3.

SELECTION OF CITATIONS
SEARCH DETAIL