Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 12(6): 7777-7787, 2020 Feb 12.
Article in English | MEDLINE | ID: mdl-31967449

ABSTRACT

The orientation of block copolymer (BCP) features in thin films can be obtained by spin-coating a BCP solution on a substrate surface functionalized by a polymer brush layer of the appropriate random copolymer (RCP). Although this approach is well established, little work reporting the amount and distribution of residual solvent in the polymer film after the spin-coating process is available. Moreover, no information can be found on the effect of trapped solvent on the interface between the BCP film and RCP brush. In this work, systems consisting of poly(styrene)-b-poly(methyl methacrylate) thin films deposited on poly(styrene-r-methyl methacrylate) brush layers are investigated by combining neutron reflectivity (NR) experiments with simulation techniques. An increase in the amount of trapped solvent is observed by NR as the BCP film thickness increases accompanied by a significant decrease of the interpenetration length between the BCP and RCP, thus suggesting that the interpenetration between grafted chains and block copolymer chains is hampered by the solvent. Hybrid particle-field molecular dynamics simulations of the analyzed system confirm the experimental observations and demonstrate a clear correlation between the interpenetration length and the amount of trapped solvent.

2.
ACS Appl Mater Interfaces ; 8(12): 8280-8, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26959626

ABSTRACT

The self-assembly of block copolymer (BCP) thin films produces dense and ordered nanostructures. Their exploitation as templates for nanolithography requires the capability to control the lateral order of the nanodomains. Among a multiplicity of polymers, the widely studied all-organic polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) BCP can easily form nanodomains perpendicularly oriented with respect to the substrate, since the weakly unbalanced surface interactions are effectively neutralized by grafting to the substrate an appropriate poly(styrene-random-methyl methacrylate) P(S-r-MMA) random copolymer (RCP). This benefit along with the selective etching of the PMMA component and the chemical similarity with the standard photoresist materials deserved for PS-b-PMMA the role of BCP of choice for the technological implementation in nanolithography. This work demonstrates that the synergic effect of thermal annealing with the initial solvent naturally trapped in the basic RCP + BCP system after the deposition process can be exploited to enhance the lateral order. The solvent content embedded in the total RCP + BCP system can be tuned by changing the molecular weight and thus the thickness of the grafted RCP brush layer, without introducing external reservoirs or dedicated setup and/or systems. The appropriate supply of solvent supports a grain coarsening kinetics following a power law with a 1/3 growth exponent for standing hexagonally ordered cylinders.

3.
Nanotechnology ; 25(4): 045301, 2014 Jan 31.
Article in English | MEDLINE | ID: mdl-24394198

ABSTRACT

The phase behaviour in thin films of an asymmetric polystyrene-b-polymethylmethacrylate (PS-b-PMMA) block copolymer with a molecular weight of 39 kg mol(-1) was assessed at a wide range of temperatures and times. Cylindrical PMMA structures featuring a diameter close to 10 nm and perpendicularly oriented with respect to the substrate were obtained at 180 °C in relatively short annealing times (t ≤ 30 min) by means of a simple thermal treatment performed in a standard rapid thermal processing machine.

SELECTION OF CITATIONS
SEARCH DETAIL
...