Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
3.
Chest ; 165(6): 1392-1405, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38295949

ABSTRACT

BACKGROUND: Positive end-expiratory pressure (PEEP) can potentially modulate inspiratory effort (ΔPes), which is the major determinant of self-inflicted lung injury. RESEARCH QUESTION: Does high PEEP reduce ΔPes in patients with moderate-to-severe ARDS on assisted ventilation? STUDY DESIGN AND METHODS: Sixteen patients with Pao2/Fio2 ≤ 200 mm Hg and ΔPes ≥ 10 cm H2O underwent a randomized sequence of four ventilator settings: PEEP = 5 cm H2O or PEEP = 15 cm H2O + synchronous (pressure support ventilation [PSV]) or asynchronous (pressure-controlled intermittent mandatory ventilation [PC-IMV]) inspiratory assistance. ΔPes and respiratory system, lung, and chest wall mechanics were assessed with esophageal manometry and occlusions. PEEP-induced alveolar recruitment and overinflation, lung dynamic strain, and tidal volume distribution were assessed with electrical impedance tomography. RESULTS: ΔPes was not systematically different at high vs low PEEP (pressure support ventilation: median, 20 cm H2O; interquartile range (IQR), 15-24 cm H2O vs median, 15 cm H2O; IQR, 13-23 cm H2O; P = .24; pressure-controlled intermittent mandatory ventilation: median, 20; IQR, 18-23 vs median, 19; IQR, 17-25; P = .67, respectively). Similarly, respiratory system and transpulmonary driving pressures, tidal volume, lung/chest wall mechanics, and pendelluft extent were not different between study phases. High PEEP resulted in lower or higher ΔPes, respiratory system driving pressure, and transpulmonary driving pressure according to whether this increased or decreased respiratory system compliance (r = -0.85, P < .001; r = -0.75, P < .001; r = -0.80, P < .001, respectively). PEEP-induced changes in respiratory system compliance were driven by its lung component and were dependent on the extent of PEEP-induced alveolar overinflation (r = -0.66, P = .006). High PEEP caused variable recruitment and systematic redistribution of tidal volume toward dorsal lung regions, thereby reducing dynamic strain in ventral areas (pressure support ventilation: median, 0.49; IQR, 0.37-0.83 vs median, 0.96; IQR, 0.62-1.56; P = .003; pressure-controlled intermittent mandatory ventilation: median, 0.65; IQR, 0.42-1.31 vs median, 1.14; IQR, 0.79-1.52; P = .002). All results were consistent during synchronous and asynchronous inspiratory assistance. INTERPRETATION: The impact of high PEEP on ΔPes and lung stress is interindividually variable according to different effects on the respiratory system and lung compliance resulting from alveolar overinflation. High PEEP may help mitigate the risk of self-inflicted lung injury solely if it increases lung/respiratory system compliance. TRIAL REGISTRATION: ClinicalTrials.gov; No.: NCT04241874; URL: www. CLINICALTRIALS: gov.


Subject(s)
Cross-Over Studies , Positive-Pressure Respiration , Respiratory Distress Syndrome , Tidal Volume , Humans , Positive-Pressure Respiration/methods , Male , Female , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/physiopathology , Middle Aged , Tidal Volume/physiology , Aged , Respiratory Mechanics/physiology , Adult , Inhalation/physiology , Manometry/methods
6.
Am J Respir Crit Care Med ; 208(12): 1293-1304, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37774011

ABSTRACT

Rationale: The effects of high-dose inhaled nitric oxide on hypoxemia in coronavirus disease (COVID-19) acute respiratory failure are unknown. Objectives: The primary outcome was the change in arterial oxygenation (PaO2/FiO2) at 48 hours. The secondary outcomes included: time to reach a PaO2/FiO2.300mmHg for at least 24 hours, the proportion of participants with a PaO2/FiO2.300mmHg at 28 days, and survival at 28 and at 90 days. Methods: Mechanically ventilated adults with COVID-19 pneumonia were enrolled in a phase II, multicenter, single-blind, randomized controlled parallel-arm trial. Participants in the intervention arm received inhaled nitric oxide at 80 ppm for 48 hours, compared with the control group receiving usual care (without placebo). Measurements and Main Results: A total of 193 participants were included in the modified intention-to-treat analysis. The mean change in PaO2/FiO2 ratio at 48 hours was 28.3mmHg in the intervention group and 21.4mmHg in the control group (mean difference, 39.1mmHg; 95% credible interval [CrI], 18.1 to 60.3). The mean time to reach a PaO2/FiO2.300mmHg in the interventional group was 8.7 days, compared with 8.4 days for the control group (mean difference, 0.44; 95% CrI, 23.63 to 4.53). At 28 days, the proportion of participants attaining a PaO2/FiO2.300mmHg was 27.7% in the inhaled nitric oxide group and 17.2% in the control subjects (risk ratio, 2.03; 95% CrI, 1.11 to 3.86). Duration of ventilation and mortality at 28 and 90 days did not differ. No serious adverse events were reported. Conclusions: The use of high-dose inhaled nitric oxide resulted in an improvement of PaO2/FiO2 at 48 hours compared with usual care in adults with acute hypoxemic respiratory failure due to COVID-19.


Subject(s)
COVID-19 , Respiratory Insufficiency , Adult , Humans , Nitric Oxide/therapeutic use , COVID-19/complications , Single-Blind Method , Respiratory Insufficiency/drug therapy , Respiratory Insufficiency/etiology , Respiration, Artificial , Administration, Inhalation
7.
Crit Care ; 27(1): 315, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37592288

ABSTRACT

BACKGROUND: The effects of awake prone position on the breathing pattern of hypoxemic patients need to be better understood. We conducted a crossover trial to assess the physiological effects of awake prone position in patients with acute hypoxemic respiratory failure. METHODS: Fifteen patients with acute hypoxemic respiratory failure and PaO2/FiO2 < 200 mmHg underwent high-flow nasal oxygen for 1 h in supine position and 2 h in prone position, followed by a final 1-h supine phase. At the end of each study phase, the following parameters were measured: arterial blood gases, inspiratory effort (ΔPES), transpulmonary driving pressure (ΔPL), respiratory rate and esophageal pressure simplified pressure-time product per minute (sPTPES) by esophageal manometry, tidal volume (VT), end-expiratory lung impedance (EELI), lung compliance, airway resistance, time constant, dynamic strain (VT/EELI) and pendelluft extent through electrical impedance tomography. RESULTS: Compared to supine position, prone position increased PaO2/FiO2 (median [Interquartile range] 104 mmHg [76-129] vs. 74 [69-93], p < 0.001), reduced respiratory rate (24 breaths/min [22-26] vs. 27 [26-30], p = 0.05) and increased ΔPES (12 cmH2O [11-13] vs. 9 [8-12], p = 0.04) with similar sPTPES (131 [75-154] cmH2O s min-1 vs. 105 [81-129], p > 0.99) and ΔPL (9 [7-11] cmH2O vs. 8 [5-9], p = 0.17). Airway resistance and time constant were higher in prone vs. supine position (9 cmH2O s arbitrary units-3 [4-11] vs. 6 [4-9], p = 0.05; 0.53 s [0.32-61] vs. 0.40 [0.37-0.44], p = 0.03). Prone position increased EELI (3887 arbitrary units [3414-8547] vs. 1456 [959-2420], p = 0.002) and promoted VT distribution towards dorsal lung regions without affecting VT size and lung compliance: this generated lower dynamic strain (0.21 [0.16-0.24] vs. 0.38 [0.30-0.49], p = 0.004). The magnitude of pendelluft phenomenon was not different between study phases (55% [7-57] of VT in prone vs. 31% [14-55] in supine position, p > 0.99). CONCLUSIONS: Prone position improves oxygenation, increases EELI and promotes VT distribution towards dependent lung regions without affecting VT size, ΔPL, lung compliance and pendelluft magnitude. Prone position reduces respiratory rate and increases ΔPES because of positional increases in airway resistance and prolonged expiratory time. Because high ΔPES is the main mechanistic determinant of self-inflicted lung injury, caution may be needed in using awake prone position in patients exhibiting intense ΔPES. Clinical trail registeration: The study was registered on clinicaltrials.gov (NCT03095300) on March 29, 2017.


Subject(s)
Respiratory Insufficiency , Wakefulness , Humans , Prone Position , Respiration , Respiratory Insufficiency/therapy , Tidal Volume , Cross-Over Studies
8.
J Clin Med ; 12(13)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37445211

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a leading cause of disability and mortality worldwide, and while no specific etiologic interventions have been shown to improve outcomes, noninvasive and invasive respiratory support strategies are life-saving interventions that allow time for lung recovery. However, the inappropriate management of these strategies, which neglects the unique features of respiratory, lung, and chest wall mechanics may result in disease progression, such as patient self-inflicted lung injury during spontaneous breathing or by ventilator-induced lung injury during invasive mechanical ventilation. ARDS characteristics are highly heterogeneous; therefore, a physiology-based approach is strongly advocated to titrate the delivery and management of respiratory support strategies to match patient characteristics and needs to limit ARDS progression. Several tools have been implemented in clinical practice to aid the clinician in identifying the ARDS sub-phenotypes based on physiological peculiarities (inspiratory effort, respiratory mechanics, and recruitability), thus allowing for the appropriate application of personalized supportive care. In this narrative review, we provide an overview of noninvasive and invasive respiratory support strategies, as well as discuss how identifying ARDS sub-phenotypes in daily practice can help clinicians to deliver personalized respiratory support and potentially improve patient outcomes.

9.
Anesthesiology ; 139(6): 801-814, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37523486

ABSTRACT

BACKGROUND: Positive end-expiratory pressure (PEEP) benefits in acute respiratory distress syndrome are driven by lung dynamic strain reduction. This depends on the variable extent of alveolar recruitment. The recruitment-to-inflation ratio estimates recruitability across a 10-cm H2O PEEP range through a simplified maneuver. Whether recruitability is uniform or not across this range is unknown. The hypotheses of this study are that the recruitment-to-inflation ratio represents an accurate estimate of PEEP-induced changes in dynamic strain, but may show nonuniform behavior across the conventionally tested PEEP range (15 to 5 cm H2O). METHODS: Twenty patients with moderate-to-severe COVID-19 acute respiratory distress syndrome underwent a decremental PEEP trial (PEEP 15 to 13 to 10 to 8 to 5 cm H2O). Respiratory mechanics and end-expiratory lung volume by nitrogen dilution were measured the end of each step. Gas exchange, recruited volume, recruitment-to-inflation ratio, and changes in dynamic, static, and total strain were computed between 15 and 5 cm H2O (global recruitment-to-inflation ratio) and within narrower PEEP ranges (granular recruitment-to-inflation ratio). RESULTS: Between 15 and 5 cm H2O, median [interquartile range] global recruitment-to-inflation ratio was 1.27 [0.40 to 1.69] and displayed a linear correlation with PEEP-induced dynamic strain reduction (r = -0.94; P < 0.001). Intraindividual recruitment-to-inflation ratio variability within the narrower ranges was high (85% [70 to 109]). The relationship between granular recruitment-to-inflation ratio and PEEP was mathematically described by a nonlinear, quadratic equation (R2 = 0.96). Granular recruitment-to-inflation ratio across the narrower PEEP ranges itself had a linear correlation with PEEP-induced reduction in dynamic strain (r = -0.89; P < 0.001). CONCLUSIONS: Both global and granular recruitment-to-inflation ratio accurately estimate PEEP-induced changes in lung dynamic strain. However, the effect of 10 cm H2O of PEEP on lung strain may be nonuniform. Granular recruitment-to-inflation ratio assessment within narrower PEEP ranges guided by end-expiratory lung volume measurement may aid more precise PEEP selection, especially when the recruitment-to-inflation ratio obtained with the simplified maneuver between PEEP 15 and 5 cm H2O yields intermediate values that are difficult to interpret for a proper choice between a high and low PEEP strategy.


Subject(s)
Respiratory Distress Syndrome , Humans , Lung , Lung Volume Measurements , Positive-Pressure Respiration , Prospective Studies
10.
J Crit Care ; 75: 154259, 2023 06.
Article in English | MEDLINE | ID: mdl-36706553

ABSTRACT

PURPOSE: To assess the accuracy of differential time to positivity (DTP) method for the diagnosis of catheter-related bloodstream infections (CRBSI) in the routine practice of our intensive care unit (ICU). MATERIALS AND METHODS: Over a five-year study period, ICU patients with a central venous catheter in place for ≥48 h and undergoing DTP test with catheter tip culture were analyzed. We investigated: the accuracy of DTP test with the usual threshold of 120 min in confirming the clinical suspicion of CRBSI; the most accurate threshold value of DTP to detect CRBSI; the diagnostic accuracy of the ratio (rather than the difference) between times to positivity. RESULTS: Among 278 episodes of paired blood cultures, 13% were CRBSIs. DTP value ≥120 min used for the diagnosis of CRBSI yielded 41% sensitivity and 74% specificity. Performance of DTP values in predicting CRBSI was low (AUC = 0.60 [95%CI: 0.48-0.72]). Cutoff value of the ratio between times to positivity was 0.80, with 46% sensitivity and 79% specificity. CONCLUSIONS: The routine use of the DTP method at any cutoff point has inadequate accuracy in detecting CRBSI in the real every day clinical practice. Not even the ratio between times to positivity seems to be clinically useful.


Subject(s)
Bacteremia , Catheter-Related Infections , Catheterization, Central Venous , Central Venous Catheters , Humans , Bacteremia/diagnosis , Blood Culture , Catheter-Related Infections/diagnosis , Catheterization, Central Venous/adverse effects , Time Factors , Intensive Care Units , Central Venous Catheters/adverse effects , Data Analysis
11.
J Crit Care ; 59: 42-48, 2020 10.
Article in English | MEDLINE | ID: mdl-32516641

ABSTRACT

PURPOSE: Whether subglottic secretions (SS) culture during invasive mechanical ventilation may aid microbiological surveillance is unknown. We conducted a prospective study to assess SS cultures predictivity of endotracheal aspirate (ETA) and bronchoalveolar lavage (BAL) isolates. MATERIALS AND METHODS: 109 patients receiving mechanical ventilation for ≥48 hours underwent SS and ETA surveillance cultures twice weekly; blind BAL was performed in case of clinically suspected pneumonia. RESULTS: SS and ETA cultures were fully concordant in 170 (81%-overall accuracy) of 211 sample pairs. As compared to ETA, SS culture global sensitivity and specificity were 84% [95%CI: 77 to 91] and 74% [95%CI: 66 to 82]; negative and positive predictive values were 82% and 77%. Forty-four episodes of clinically suspected pneumonia were observed. Compared to BAL, SS culture global sensitivity and specificity were 68% [95%CI: 45 to 81] and 63% [95%CI: 44 to 82]; negative and positive predictive values were both 65%. SS sensitivity, specificity, positive and negative predictive values in anticipating BAL isolates were comparable to ETA (all p > 0.20). CONCLUSIONS: SS cultures show worthy accuracy in identifying ETA isolates, with excellent sensitivity and good negative predictivity. SS cultures may be not inferior to ETA in predicting BAL results in case of ventilator-associated pneumonia. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03153241. Registered on 15 May 2017, https://clinicaltrials.gov/ct2/show/NCT03153241.


Subject(s)
Bacteria/isolation & purification , Bacterial Infections/diagnosis , Bodily Secretions/microbiology , Culture Techniques/methods , Pneumonia, Ventilator-Associated/diagnosis , Respiration, Artificial/adverse effects , Aged , Bacterial Infections/microbiology , Bronchoalveolar Lavage/methods , Bronchoalveolar Lavage Fluid/microbiology , Data Accuracy , Female , Humans , Male , Middle Aged , Pneumonia, Ventilator-Associated/microbiology , Predictive Value of Tests , Prospective Studies , Sensitivity and Specificity
12.
Respir Care ; 64(10): 1199-1207, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31015389

ABSTRACT

BACKGROUND: Several respiratory abnormalities can be present in primary hypothyroidism and can be reversed with adequate hormone treatment. However, the role of thyroid hormone replacement therapy on the respiratory system in patients with nonthyroidal illness syndrome is still unclear. This physiologic study evaluated the effect of thyroid hormone treatment on respiratory muscle function in subjects with nonthyroidal illness syndrome and while on mechanical ventilation. The primary end point was neuromechanical efficiency, which provides an estimate of the efficiency of diaphragmatic contraction. Secondary end points were the transdiaphragmatic pressure-time product and the swing of the electrical activity of the diaphragm, which reflect the work of breathing and inspiratory effort, respectively. METHODS: Fifteen subjects on mechanical ventilation for ≥48 h and with a diagnosis of nonthyroidal illness syndrome who had a failed spontaneous breathing trial, received intravenous triiodothyronine. The hormone was administered as an intravenous bolus of 0.4 µg/kg triiodothyronine, followed by continuous perfusion at 0.6 µg/kg for 24 h. Neuromechanical efficiency was calculated as the ratio between the drop in airway pressure during an expiratory occlusion and the corresponding electrical activity of the diaphragm peak. Recordings were taken at baseline and after 3, 6, and 24 h. RESULTS: After study completion, free triiodothyronine serum concentrations increased in all the subjects (mean ± SD increase, 0.84 ± 0.34 pg/mL). Neuromechanical efficiency showed no significant changes throughout the study (mean ± SD baseline, 1.40 ± 0.87 cm H2O/µV; 3 h, 1.28 ± 0.64 cm H2O/µV; 6 h, 1.33 ± 0.87 cm H2O/µV; 24 h, 1.41 ± 0.96 cm H2O/µV). Similarly, no variations in transdiaphragmatic pressure-time product per min (mean ± SD baseline, 238.1 ± 124 cm H2O × s/min; 3 h, 242.5 ± 140.3 cm H2O × s /min; 6 h, 247.5 ± 161.7 cm H2O × s/min; 24 h, 281.2 ± 201.2 cm H2O × s/min) or swing of electrical activity of the diaphragm (mean ± baseline, 20.9 ± 13.1 µV; 3 h, 17.2 ± 8.3 µV; 6 h, 17.4 ± 11.3 µV; 24 h, 20.3 ± 13.7 µV) were observed during hormone administration. CONCLUSIONS: In the subjects on mechanical ventilation who were admitted to the ICU with nonthyroidal illness syndrome, thyroid hormone replacement treatment did not yield any benefit on respiratory muscle function when assessed by neuromechanical efficiency, which indicated that, in these subjects restoring normal levels of serum thyroid hormones is debatable. (ClinicalTrials.gov registration NCT03157466.).


Subject(s)
Diaphragm/drug effects , Diaphragm/physiopathology , Muscle Contraction/drug effects , Triiodothyronine/blood , Triiodothyronine/pharmacology , Aged , Female , Humans , Inhalation , Male , Middle Aged , Respiration, Artificial , Syndrome , Thyrotropin/blood , Thyroxine/blood , Treatment Outcome , Triiodothyronine/therapeutic use , Triiodothyronine, Reverse/blood , Work of Breathing
13.
Crit Care Clin ; 34(3): 395-412, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29907272

ABSTRACT

Noninvasive ventilation (NIV) has assumed a central role in the treatment of selected patients with acute respiratory failure due to exacerbated chronic obstructive pulmonary disease or acute cardiogenic pulmonary edema. Recent advances in the understanding of physiologic aspects of NIV application through different interfaces and ventilator settings have led to improved patient-machine interaction, enhancing favorable NIV outcome. In recent years, the growing role of NIV in the acute care setting has led to the development of technical innovations to overcome the problems related to gas leakage and dead space, improving the quality of the devices and optimizing ventilation modes.


Subject(s)
Noninvasive Ventilation/methods , Respiratory Insufficiency/therapy , Airway Extubation/adverse effects , Cannula , Continuous Positive Airway Pressure , Critical Care , Humans , Noninvasive Ventilation/instrumentation , Oxygen/administration & dosage , Patient Selection , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Edema/complications , Respiratory Insufficiency/etiology , Respiratory Insufficiency/prevention & control , Ventilator Weaning/methods , Work of Breathing
SELECTION OF CITATIONS
SEARCH DETAIL
...