Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Comput Biol ; 17(1): e1007994, 2021 01.
Article in English | MEDLINE | ID: mdl-33497383

ABSTRACT

At very early embryonic stages, when embryos are composed of just a few cells, establishing the correct packing arrangements (contacts) between cells is essential for the proper development of the organism. As early as the 4-cell stage, the observed cellular packings in different species are distinct and, in many cases, differ from the equilibrium packings expected for simple adherent and deformable particles. It is unclear what are the specific roles that different physical parameters, such as the forces between blastomeres, their division times, orientation of cell division and embryonic confinement, play in the control of these packing configurations. Here we simulate the non-equilibrium dynamics of cells in early embryos and systematically study how these different parameters affect embryonic packings at the 4-cell stage. In the absence of embryo confinement, we find that cellular packings are not robust, with multiple packing configurations simultaneously possible and very sensitive to parameter changes. Our results indicate that the geometry of the embryo confinement determines the packing configurations at the 4-cell stage, removing degeneracy in the possible packing configurations and overriding division rules in most cases. Overall, these results indicate that physical confinement of the embryo is essential to robustly specify proper cellular arrangements at very early developmental stages.


Subject(s)
Biomechanical Phenomena/physiology , Blastomeres , Embryonic Development/physiology , Animals , Blastomeres/cytology , Blastomeres/physiology , Caenorhabditis elegans/embryology , Cell Communication/physiology , Cell Division/physiology , Computational Biology , Mice , Models, Biological , Sea Urchins/embryology
2.
Nature ; 561(7723): 401-405, 2018 09.
Article in English | MEDLINE | ID: mdl-30185907

ABSTRACT

Just as in clay moulding or glass blowing, physically sculpting biological structures requires the constituent material to locally flow like a fluid while maintaining overall mechanical integrity like a solid. Disordered soft materials, such as foams, emulsions and colloidal suspensions, switch from fluid-like to solid-like behaviours at a jamming transition1-4. Similarly, cell collectives have been shown to display glassy dynamics in 2D and 3D5,6 and jamming in cultured epithelial monolayers7,8, behaviours recently predicted theoretically9-11 and proposed to influence asthma pathobiology8 and tumour progression12. However, little is known about whether these seemingly universal behaviours occur in vivo13 and, specifically, whether they play any functional part during embryonic morphogenesis. Here, by combining direct in vivo measurements of tissue mechanics with analysis of cellular dynamics, we show that during vertebrate body axis elongation, posterior tissues undergo a jamming transition from a fluid-like behaviour at the extending end, the mesodermal progenitor zone, to a solid-like behaviour in the presomitic mesoderm. We uncover an anteroposterior, N-cadherin-dependent gradient in yield stress that provides increasing mechanical integrity to the presomitic mesoderm, consistent with the tissue transiting from a wetter to a dryer foam-like architecture. Our results show that cell-scale stresses fluctuate rapidly (within about 1 min), enabling cell rearrangements and effectively 'melting' the tissue at the growing end. Persistent (more than 0.5 h) stresses at supracellular scales, rather than cell-scale stresses, guide morphogenetic flows in fluid-like tissue regions. Unidirectional axis extension is sustained by the reported rigidification of the presomitic mesoderm, which mechanically supports posterior, fluid-like tissues during remodelling before their maturation. The spatiotemporal control of fluid-like and solid-like tissue states may represent a generic physical mechanism of embryonic morphogenesis.


Subject(s)
Embryonic Development , Models, Biological , Zebrafish/embryology , Animals , Cadherins/metabolism , Mesoderm/cytology , Mesoderm/embryology , Mesoderm/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...