Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
2.
Front Plant Sci ; 14: 1343876, 2023.
Article in English | MEDLINE | ID: mdl-38312355

ABSTRACT

Xylella fastidiosa subsp. pauca ST53 (Xfp) is a pathogenic bacterium causing one of the most severe plant diseases currently threatening the olive-growing areas of the Mediterranean, the Olive Quick Decline Syndrome (OQDS). The majority of the olive cultivars upon infections more or less rapidly develop severe desiccation phenomena, while few are resistant (e.g. Leccino and FS17), being less impacted by the infections. The present study contributes to elucidating the basis of the resistance phenomenon by investigating the influence of the composition of the xylem sap of plant species on the rate of bacterial multiplication. Xylem saps from Xfp host and non-host species were used for growing the bacterium in vitro, monitoring bacterial growth, biofilm formation, and the expression of specific genes. Moreover, species-specific metabolites, such as mannitol, quinic acid, tartaric acid, and choline were identified by non-targeted NMR-based metabolomic analysis in olive, grapevine, and citrus. In general, the xylem saps of immune species, including grapevine and citrus, were richer in amino acids, organic acids, and glucose. The results showed greater bacterial growth in the olive cultivar notoriously susceptible to Xfp (Cellina di Nardò), compared to that recorded in the resistant cultivar Leccino. Conversely, higher biofilm formation occurred in Leccino compared to Cellina di Nardò. Using the xylem saps of two Xfp-immune species (citrus and grapevine), a divergent bacterial behavior was recorded: low planktonic growth and biofilm production were detected in citrus compared to the grapevine. A parallel evaluation of the expression of 15 genes showed that Xfp directs its molecular functions mainly to virulence. Overall, the results gained through this multidisciplinary study contribute to extending the knowledge on the host-pathogen interaction, while confirming that the host response and resistance mechanism have a multifactorial basis, most likely with a cumulative effect on the phenotype.

3.
New Phytol ; 234(5): 1598-1605, 2022 06.
Article in English | MEDLINE | ID: mdl-35279849

ABSTRACT

Xylella fastidiosa is the causal agent of important crop diseases and is transmitted by xylem-sap-feeding insects. The bacterium colonizes xylem vessels and can persist with a commensal or pathogen lifestyle in more than 500 plant species. In the past decade, reports of X. fastidiosa across the globe have dramatically increased its known occurrence. This raises important questions: How does X. fastidiosa interact with the different host plants? How does the bacterium interact with the plant immune system? How does it influence the host's microbiome? We discuss recent strain genetic typing and plant transcriptome and microbiome analyses, which have advanced our understanding of factors that are important for X. fastidiosa plant infection.


Subject(s)
Microbiota , Xylella , Plant Diseases/microbiology , Plants
4.
Microb Genom ; 7(12)2021 12.
Article in English | MEDLINE | ID: mdl-34904938

ABSTRACT

The invasive plant pathogen Xylella fastidiosa currently threatens European flora through the loss of economically and culturally important host plants. This emerging vector-borne bacterium, native to the Americas, causes several important diseases in a wide range of plants including crops, ornamentals, and trees. Previously absent from Europe, and considered a quarantine pathogen, X. fastidiosa was first detected in Apulia, Italy in 2013 associated with a devastating disease of olive trees (Olive Quick Decline Syndrome, OQDS). OQDS has led to significant economic, environmental, cultural, as well as political crises. Although the biology of X. fastidiosa diseases have been studied for over a century, there is still no information on the determinants of specificity between bacterial genotypes and host plant species, which is particularly relevant today as X. fastidiosa is expanding in the naive European landscape. We analysed the genomes of 79 X. fastidiosa samples from diseased olive trees across the affected area in Italy as well as genomes of the most genetically closely related strains from Central America. We provided insights into the ecological and evolutionary emergence of this pathogen in Italy. We first showed that the outbreak in Apulia is due to a single introduction from Central America that we estimated to have occurred in 2008 [95 % HPD: 1930-2016]. By using a combination of population genomic approaches and evolutionary genomics methods, we further identified a short list of genes that could play a major role in the adaptation of X. fastidiosa to this new environment. We finally provided experimental evidence for the adaptation of the strain to this new environment.


Subject(s)
Olea/microbiology , Whole Genome Sequencing/methods , Xylella/classification , Adaptation, Physiological , Central America , Genome, Bacterial , High-Throughput Nucleotide Sequencing , Italy , Phylogeny , Phylogeography , Plant Diseases/microbiology , Xylella/genetics , Xylella/isolation & purification
5.
Pathogens ; 9(9)2020 Sep 02.
Article in English | MEDLINE | ID: mdl-32887278

ABSTRACT

The dynamics of Xylella fastidiosa infections in the context of the endophytic microbiome was studied in field-grown plants of the susceptible and resistant olive cultivars Kalamata and FS17. Whole metagenome shotgun sequencing (WMSS) coupled with 16S/ITS rRNA gene sequencing was carried out on the same trees at two different stages of the infections: In Spring 2017 when plants were almost symptomless and in Autumn 2018 when the trees of the susceptible cultivar clearly showed desiccations. The progression of the infections detected in both cultivars clearly unraveled that Xylella tends to occupy the whole ecological niche and suppresses the diversity of the endophytic microbiome. However, this trend was mitigated in the resistant cultivar FS17, harboring lower population sizes and therefore lower Xylella average abundance ratio over total bacteria, and a higher α-diversity. Host cultivar had a negligible effect on the community composition and no clear associations of a single taxon or microbial consortia with the resistance cultivar were found with both sequencing approaches, suggesting that the mechanisms of resistance likely reside on factors that are independent of the microbiome structure. Overall, Proteobacteria, Actinobacteria, Firmicutes, and Bacteriodetes dominated the bacterial microbiome while Ascomycota and Basidiomycota those of Fungi.

6.
Microbiol Resour Announc ; 9(28)2020 Jul 09.
Article in English | MEDLINE | ID: mdl-32646905

ABSTRACT

In this study, we documented the complete coding genome sequence of a Black queen cell virus (BQCV) isolate from honey bees in Italy. This genome sequence illustrates a high similarity with other BQCV isolates reported worldwide and could provide insights into BQCV genome phylogeny and divergence.

7.
Phytopathology ; 110(5): 969-972, 2020 May.
Article in English | MEDLINE | ID: mdl-32096699

ABSTRACT

Xylella fastidiosa is an economically important plant pathogenic bacterium of global importance associated, since 2013, with a devastating epidemic in olive trees in Italy. Since then, several outbreaks of this pathogen have been reported in other European member countries including Spain, France, and Portugal. In Spain, the three major subspecies (subsp. fastidiosa, multiplex, and pauca) of the bacterium have been detected in the Balearic Islands, but only subspecies multiplex in the mainland (Alicante). We present the first complete genome sequences of two Spanish strains: X. fastidiosa subsp. fastidiosa IVIA5235 from Mallorca and X. fastidiosa subsp. multiplex IVIA5901 from Alicante, using Oxford Nanopore and Illumina sequence reads, and two hybrid approaches for genome assembly. These completed genomes will provide a resource to better understand the biology of these X. fastidiosa strains.


Subject(s)
Xylella , Europe , France , Italy , Phylogeny , Plant Diseases , Sequence Analysis, DNA , Spain
8.
Appl Environ Microbiol ; 86(3)2020 01 21.
Article in English | MEDLINE | ID: mdl-31704683

ABSTRACT

Pathogen introductions have led to numerous disease outbreaks in naive regions of the globe. The plant pathogen Xylella fastidiosa has been associated with various recent epidemics in Europe affecting agricultural crops, such as almond, grapevine, and olive, but also endemic species occurring in natural forest landscapes and ornamental plants. We compared whole-genome sequences of X. fastidiosa subspecies multiplex from America and strains associated with recent outbreaks in southern Europe to infer their likely origins and paths of introduction within and between the two continents. Phylogenetic analyses indicated multiple introductions of X. fastidiosa subspecies multiplex into Italy, Spain, and France, most of which emerged from a clade with limited genetic diversity with a likely origin in California, USA. The limited genetic diversity observed in X. fastidiosa subspecies multiplex strains originating from California is likely due to the clade itself being an introduction from X. fastidiosa subspecies multiplex populations in the southeastern United States, where this subspecies is most likely endemic. Despite the genetic diversity found in some areas in Europe, there was no clear evidence of recombination occurring among introduced X. fastidiosa strains in Europe. Sequence type taxonomy, based on multilocus sequence typing (MLST), was shown, at least in one case, to not lead to monophyletic clades of this pathogen; whole-genome sequence data were more informative in resolving the history of introductions than MLST data. Although additional data are necessary to carefully tease out the paths of these recent dispersal events, our results indicate that whole-genome sequence data should be considered when developing management strategies for X. fastidiosa outbreaks.IMPORTANCEXylella fastidiosa is an economically important plant-pathogenic bacterium that has emerged as a pathogen of global importance associated with a devastating epidemic in olive trees in Italy associated with X. fastidiosa subspecies pauca and other outbreaks in Europe, such as X. fastidiosa subspecies fastidiosa and X. fastidiosa subspecies multiplex in Spain and X. fastidiosa subspecies multiplex in France. We present evidence of multiple introductions of X. fastidiosa subspecies multiplex, likely from the United States, into Spain, Italy, and France. These introductions illustrate the risks associated with the commercial trade of plant material at global scales and the need to develop effective policy to limit the likelihood of pathogen pollution into naive regions. Our study demonstrates the need to utilize whole-genome sequence data to study X. fastidiosa introductions at outbreak stages, since a limited number of genetic markers does not provide sufficient phylogenetic resolution to determine dispersal paths or relationships among strains that are of biological and quarantine relevance.


Subject(s)
Genome, Bacterial , Plant Diseases/microbiology , Xylella/genetics , Brazil , Europe , Introduced Species , Whole Genome Sequencing
9.
Pathogens ; 8(4)2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31795218

ABSTRACT

Olive quick decline syndrome (OQDS) is a devastating disease of olive trees in the Salento region, Italy. This disease is caused by the bacterium Xylella fastidiosa, which is widespread in the outbreak area; however, the "Leccino" variety of olives has proven to be resistant with fewer symptoms and lower bacterial populations than the "Ogliarola salentina" variety. We completed an empirical study to determine the mineral and trace element contents (viz; ionome) of leaves from infected trees comparing the two varieties, to develop hypotheses related to the resistance of Leccino trees to X. fastidiosa infection. All samples from both cultivars tested were infected by X. fastidiosa, even if leaves were asymptomatic at the time of collection, due to the high disease pressure in the outbreak area and the long incubation period of this disease. Leaves were binned for the analysis by variety, field location, and infected symptomatic and infected asymptomatic status by visual inspection. The ionome of leaf samples was determined using inductively coupled plasma optical emission spectroscopy (ICP-OES) and compared with each other. These analyses showed that Leccino variety consistently contained higher manganese (Mn) levels compared with Ogliarola salentina, and these levels were higher in both infected asymptomatic and infected symptomatic leaves. Infected asymptomatic and infected symptomatic leaves within a host genotype also showed differences in the ionome, particularly a higher concentration of calcium (Ca) and Mn levels in the Leccino cultivar, and sodium (Na) in both varieties. We hypothesize that the ionome differences in the two varieties contribute to protection against disease caused by X. fastidiosa infection.

10.
Plants (Basel) ; 8(9)2019 Sep 07.
Article in English | MEDLINE | ID: mdl-31500293

ABSTRACT

Diseases caused by Xylella fastidiosa are among the most destructive for several agricultural productions. A deadly disease of olive, termed olive quick decline syndrome, is one of the most recent examples of the severe impacts caused by the introduction and spread of this bacterium in new ecosystems with favorable epidemiological conditions. Deciphering the cascade of events leading to the development of severe alterations in the susceptible host plants is a priority of several research programs investigating strategies to mitigate the detrimental impacts of the infections. However, in the case of olives, the long latent period (>1 year) makes this pathosystem not amenable for such studies. We have inoculated alfalfa (Medicago sativa) with the olive-infecting strain "De Donno" isolated from a symptomatic olive in Apulia (Italy), and we demonstrated that this highly pathogenic strain causes an overactive reaction that ends up with the necrosis of the inoculated stem, a reaction that differs from the notoriously Alfalfa Dwarf disease, caused by X. fastidiosa strains isolated from grapes and almonds. RNASeq analysis showed that major plant immunity pathways are activated, in particular, several calcium transmembrane transporters and enzymes responsible for the production of reactive oxygen species (ROS). Signs of the necrotic reaction are anticipated by the upregulation of genes responsible for plant cell death and the hypersensitive reaction. Overall the whole infection process takes four months in alfalfa, which makes this pathosystem suitable for studies involving either the plant response to the infection or the role of Xylella genes in the expression of symptoms.

11.
Phytopathology ; 109(9): 1516-1518, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31329051

ABSTRACT

An outbreak of Xylella fastidiosa was discovered in late 2018 in northern Italy affecting several plant species. Multilocus sequence typing analyses detected the presence of strains clustering in X. fastidiosa subsp. multiplex and harboring a hitherto uncharacterized sequence type, ST87. Three cultured strains (TOS4, TOS5, and TOS14) were subjected to high-throughput sequencing and the draft genomes assembled. Phylogenetic analysis conclusively indicated that they belong to the subspecies multiplex. The genetic information generated for these newly discovered strains further supports the evidence that sequence types are associated with the emergence of X. fastidiosa in Europe, posing major challenges for predicting the main threatened European and Mediterranean crops and plant species.


Subject(s)
Xylella , Disease Outbreaks , Europe , Italy , Phylogeny , Plant Diseases/microbiology , Sequence Analysis, DNA
12.
Methods Mol Biol ; 2015: 105-126, 2019.
Article in English | MEDLINE | ID: mdl-31222699

ABSTRACT

Resistance-breaking (RB) strains constitute a clade of biological and genetically distinct isolates of Citrus tristeza virus (CTV) that replicate and move systemically in Poncirus trifoliata (trifoliate orange), resistant to other known strains of CTV. Molecular markers have been developed by comparative genome analysis to allow quick identification of potential RB isolates. Here, methods are described to identify and characterize RB strains by reverse transcription-polymerase chain reaction (RT-PCR), quantitative real-time RT-PCR (RT-qPCR), full-length genome sequencing, and biological indexing.


Subject(s)
Closterovirus/genetics , Genotype , Real-Time Polymerase Chain Reaction
13.
Phytopathology ; 109(2): 219-221, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30592693

ABSTRACT

An outbreak of Xylella fastidiosa subsp. multiplex sequence type ST6 was discovered in 2017 in mainland Spain affecting almond trees. Two cultured almond strains, "ESVL" and "IVIA5901," were subjected to high throughput sequencing and the draft genomes assembled. Phylogenetic analysis conclusively indicated they belong to the subspecies multiplex, and pairwise comparisons of the chromosomal genomes showed an average nucleotide identity higher than 99%. Interestingly, the two strains differ for the presence of the plasmids pXF64-Hb_ESVL and pUCLA-ESVL detected only in the ESVL strain. The availability of these draft genomes contribute to extend the European genomic sequence dataset, a first step toward setting new research to elucidate the pathway of introduction and spread of the numerous strains of this subspecies so far detected in Europe.


Subject(s)
Plant Diseases/microbiology , Prunus dulcis , Xylella , Europe , Phylogeny , Sequence Analysis, DNA , Spain
14.
Article in English | MEDLINE | ID: mdl-30533706

ABSTRACT

We report the complete annotated genome sequence of the plant-pathogenic bacterium Xylella fastidiosa subsp. fastidiosa strain IVIA5235. This strain was recovered from a cherry tree in Mallorca, Spain.

15.
Arch Virol ; 163(7): 1795-1804, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29550931

ABSTRACT

Strain differentiating marker profiles of citrus tristeza virus (CTV) isolates from California have shown the presence of multiple genotypes. To better define the genetic diversity involved, full-length genome sequences from four California CTV isolates were determined by small-interfering RNA sequencing. Phylogenetic analysis and nucleotide sequence comparisons differentiated these isolates into the genotypes VT (CA-VT-AT39), T30 (CA-T30-AT4), and a new strain called S1 (CA-S1-L and CA-S1-L65). S1 isolates had three common recombination events within portions of genes from VT, T36 and RB strains and were transmissible by Aphis gossypii. Virus indexing showed that CA-VT-AT39 could be classified as a severe strain, whereas CA-T30-AT4, CA-S1-L and CA-S1-L65 were mild. CA-VT-AT39, CA-S1-L, and CA-S1-L65 reacted with monoclonal antibody MCA13, whereas CA-T30-AT4 did not. RT-PCR and RT-qPCR detection assays for the S1 strain were developed and used to screen MCA13-reactive isolates in a CTV collection from central California collected from 1968 to 2011. Forty-two isolates were found to contain the S1 strain, alone or in combinations with other genotypes. BLAST and phylogenetic analysis of the S1 p25 gene region with other extant CTV sequences from the NCBI database suggested that putative S1-like isolates might occur elsewhere (e.g., China, South Korea, Turkey, Bosnia and Croatia). This information is important for CTV evolution, detection of specific strains, and cross-protection.


Subject(s)
Citrus/virology , Closterovirus/genetics , Closterovirus/physiology , Genetic Variation , Plant Diseases/virology , Animals , Aphids/virology , California , Closterovirus/classification , Closterovirus/isolation & purification , Genome, Viral , Genotype , Phylogeny , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , Recombination, Genetic , Sequence Analysis, DNA
16.
Methods Mol Biol ; 1746: 27-36, 2018.
Article in English | MEDLINE | ID: mdl-29492883

ABSTRACT

A protocol is described to purify small (s)RNA molecules from tissues of grapevine and other woody plants. The protocol has been specifically developed to analyze sRNA populations by high-throughput sequencing. It has been widely used on species of the genera Prunus and Vitis particularly rich in polyphenols and other enzyme-inhibiting compounds. The high quality of the sRNAs extracted from leaf or phloem tissues makes them suitable for all molecular biology reactions, in particular for next-generation sequencing library preparation.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Phloem/genetics , Plant Leaves/genetics , Prunus/genetics , RNA, Plant/isolation & purification , Vitis/genetics , Wood/genetics , Gene Library , Phloem/chemistry , Plant Leaves/chemistry , Prunus/chemistry , RNA, Plant/genetics , Vitis/chemistry , Wood/chemistry
17.
Genome Announc ; 5(27)2017 Jul 06.
Article in English | MEDLINE | ID: mdl-28684573

ABSTRACT

We report here the complete and annotated genome sequence of the plant-pathogenic bacterium Xylella fastidiosa subsp. pauca strain De Donno. This strain was recovered from an olive tree severely affected by olive quick decline syndrome (OQDS), a devastating olive disease associated with X. fastidiosa infections in susceptible olive cultivars.

18.
Phytopathology ; 107(7): 901-908, 2017 07.
Article in English | MEDLINE | ID: mdl-28453412

ABSTRACT

Most Citrus tristeza virus (CTV) isolates in California are biologically mild and symptomless in commercial cultivars on CTV tolerant rootstocks. However, to better define California CTV isolates showing divergent serological and genetic profiles, selected isolates were subjected to deep sequencing of small RNAs. Full-length sequences were assembled, annotated and trifoliate orange resistance-breaking (RB) isolates of CTV were identified. Phylogenetic relationships based on their full genomes placed three isolates in the RB clade: CA-RB-115, CA-RB-AT25, and CA-RB-AT35. The latter two isolates were obtained by aphid transmission from Murcott and Dekopon trees, respectively, containing CTV mixtures. The California RB isolates were further distinguished into two subclades. Group I included CA-RB-115 and CA-RB-AT25 with 99% nucleotide sequence identity with RB type strain NZRB-G90; and group II included CA-RB-AT35 with 99 and 96% sequence identity with Taiwan Pumelo/SP/T1 and HA18-9, respectively. The RB phenotype was confirmed by detecting CTV replication in graft-inoculated Poncirus trifoliata and transmission from P. trifoliata to sweet orange. The California RB isolates induced mild symptoms compared with severe isolates in greenhouse indexing tests. Further examination of 570 CTV accessions, acquired from approximately 1960 and maintained in planta at the Central California Tristeza Eradication Agency, revealed 16 RB positive isolates based on partial p65 sequences. Six isolates collected from 1992 to 2011 from Tulare and Kern counties were CA-RB-115-like; and 10 isolates collected from 1968 to 2010 from Riverside, Fresno, and Kern counties were CA-RB-AT35-like. The presence of the RB genotype is relevant because P. trifoliata and its hybrids are the most popular rootstocks in California.


Subject(s)
Citrus sinensis/virology , Plant Diseases/virology , Plant Viruses/isolation & purification , California , Genome, Viral , Phylogeny , Plant Viruses/genetics , RNA, Viral/genetics
19.
Phytopathology ; 107(7): 816-827, 2017 07.
Article in English | MEDLINE | ID: mdl-28414633

ABSTRACT

Xylella fastidiosa is a plant-pathogenic bacterium recently introduced in Europe that is causing decline in olive trees in the South of Italy. Genetic studies have consistently shown that the bacterial genotype recovered from infected olive trees belongs to the sequence type ST53 within subspecies pauca. This genotype, ST53, has also been reported to occur in Costa Rica. The ancestry of ST53 was recently clarified, showing it contains alleles that are monophyletic with those of subsp. pauca in South America. To more robustly determine the phylogenetic placement of ST53 within X. fastidiosa, we performed a comparative analysis based on single nucleotide polymorphisms (SNPs) and the study of the pan-genome of the 27 currently public available whole genome sequences of X. fastidiosa. The resulting maximum-parsimony and maximum likelihood trees constructed using the SNPs and the pan-genome analysis are consistent with previously described X. fastidiosa taxonomy, distinguishing the subsp. fastidiosa, multiplex, pauca, sandyi, and morus. Within the subsp. pauca, the Italian and three Costa Rican isolates, all belonging to ST53, formed a compact phylotype in a clade divergent from the South American pauca isolates, also distinct from the recently described coffee isolate CFBP8072 imported into Europe from Ecuador. These findings were also supported by the gene characterization of a conjugative plasmid shared by all the four ST53 isolates. Furthermore, isolates of the ST53 clade possess an exclusive locus encoding a putative ATP-binding protein belonging to the family of histidine kinase-like ATPase gene, which is not present in isolates from the subspecies multiplex, sandyi, and pauca, but was detected in ST21 isolates of the subspecies fastidiosa from Costa Rica. The clustering and distinctiveness of the ST53 isolates supports the hypothesis of their common origin, and the limited genetic diversity among these isolates suggests this is an emerging clade within subsp. pauca.


Subject(s)
Genome, Bacterial , Genome-Wide Association Study , Genotype , Xylella/genetics , Costa Rica , DNA, Bacterial/genetics , Gene Expression Regulation, Bacterial , Italy , Phylogeny , Polymorphism, Single Nucleotide
20.
Mol Plant Pathol ; 18(7): 925-936, 2017 09.
Article in English | MEDLINE | ID: mdl-27349357

ABSTRACT

A novel virus has been identified by next-generation sequencing (NGS) in privet (Ligustrum japonicum L.) affected by a graft-transmissible disease characterized by leaf blotch symptoms resembling infectious variegation, a virus-like privet disease with an unclear aetiology. This virus, which has been tentatively named 'privet leaf blotch-associated virus' (PrLBaV), was absent in non-symptomatic privet plants, as revealed by NGS and reverse transcription-polymerase chain reaction (RT-PCR). Molecular characterization of PrLBaV showed that it has a segmented genome composed of two positive single-stranded RNAs, one of which (RNA1) is monocistronic and codes for the viral replicase, whereas the other (RNA2) contains two open reading frames (ORFs), ORF2a and ORF2b, coding for the putative movement (p38) and coat (p30) proteins, respectively. ORF2b is very probably expressed through a subgenomic RNA starting with six nucleotides (AUAUCU) that closely resemble those found in the 5'-terminal end of genomic RNA1 and RNA2 (AUAUUU and AUAUAU, respectively). The molecular signatures identified in the PrLBaV RNAs and proteins resemble those of Raspberry bushy dwarf virus (RBDV), currently the only member of the genus Idaeovirus. These data, together with phylogenetic analyses, are consistent with the proposal of considering PrLBaV as a representative of the second species in the genus Idaeovirus. Transient expression of a recombinant PrLBaV p38 fused to green fluorescent protein in leaves of Nicotiana benthamiana, coupled with confocal laser scanning microscopy assays, showed that it localizes at cell plasmodesmata, strongly supporting its involvement in viral movement/trafficking and providing the first functional characterization of an idaeovirus encoded protein.


Subject(s)
Ligustrum/virology , Plant Diseases/virology , Plant Viruses/physiology , Amino Acid Sequence , Base Sequence , Genome, Viral , Nucleic Acid Conformation , Phylogeny , Plant Viruses/genetics , Plasmodesmata , RNA, Viral/chemistry , RNA, Viral/genetics , Subcellular Fractions/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...