Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 6915, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36443301

ABSTRACT

Still's disease is a severe inflammatory syndrome characterized by fever, skin rash and arthritis affecting children and adults. Patients with Still's disease may also develop macrophage activation syndrome, a potentially fatal complication of immune dysregulation resulting in cytokine storm. Here we show that mTORC1 (mechanistic target of rapamycin complex 1) underpins the pathology of Still's disease and macrophage activation syndrome. Single-cell RNA sequencing in a murine model of Still's disease shows preferential activation of mTORC1 in monocytes; both mTOR inhibition and monocyte depletion attenuate disease severity. Transcriptomic data from patients with Still's disease suggest decreased expression of the mTORC1 inhibitors TSC1/TSC2 and an mTORC1 gene signature that strongly correlates with disease activity and treatment response. Unrestricted activation of mTORC1 by Tsc2 deletion in mice is sufficient to trigger a Still's disease-like syndrome, including both inflammatory arthritis and macrophage activation syndrome with hemophagocytosis, a cellular manifestation that is reproduced in human monocytes by CRISPR/Cas-mediated deletion of TSC2. Consistent with this observation, hemophagocytic histiocytes from patients with macrophage activation syndrome display prominent mTORC1 activity. Our study suggests a mechanistic link of mTORC1 to inflammation that connects the pathogenesis of Still's disease and macrophage activation syndrome.


Subject(s)
Arthritis, Juvenile , Lymphohistiocytosis, Hemophagocytic , Macrophage Activation Syndrome , Adult , Child , Humans , Mice , Animals , Macrophage Activation Syndrome/genetics , Mechanistic Target of Rapamycin Complex 1/genetics , Lymphohistiocytosis, Hemophagocytic/genetics , Models, Theoretical
2.
Laryngoscope ; 129(7): E229-E237, 2019 07.
Article in English | MEDLINE | ID: mdl-30613972

ABSTRACT

OBJECTIVES/HYPOTHESIS: Lubricin/proteoglycan-4 (PRG4) lubricates connective tissues such as joints and tendon sheaths, enabling them to better withstand shearing and frictional forces during motion. We wondered whether PRG4 might play a role in phonation, as normal vocal folds withstand repetitive, high-velocity deformations remarkably well. As a first step, we tested whether PRG4 is expressed in vocal folds. STUDY DESIGN: Laboratory study. METHODS: Anatomical and molecular methods were applied to 47 larynges from humans, macaque (Macaca fascicularis), canines, pigs, calves, and rats. Immunohistochemistry (IHC), Western blot, and quantitative real-time polymerase chain reaction (qRT-PCR) methods were used to test for the presence of PRG4. RESULTS: In all species, the true vocal fold lamina propria (TVF-LP) was positive for PRG4 by IHC, whereas immunoreactivity of the false vocal fold was weak or absent, depending on the species. Human TVF-LP was strongly stained across all layers. Immunoreactivity was seen variably on the vocal fold surface and within the vocal fold epithelium, in the conus elasticus and thyroglottic ligament, and at the tip of vocal process. Western blots of four humans and six pigs demonstrated immunoreactivity at appropriate molecular weight. qRT-PCR of pig tissues confirmed PRG4 mRNA expression, which was highest in the TVF-LP. CONCLUSIONS: PRG4 was found in phonatory tissues of six mammals. We suggest it might act as a lubricant within the lamina propria and possibly on the vocal fold surface, limiting phonation-related damage to vocal fold extracellular matrix and epithelium, and enhancing vocal efficiency by reducing internal friction (viscosity) within the vocal fold. LEVEL OF EVIDENCE: NA Laryngoscope, 129:E229-E237, 2019.


Subject(s)
Glycoproteins/metabolism , Laryngeal Mucosa/metabolism , Mucous Membrane/metabolism , Proteoglycans/metabolism , Vocal Cords/metabolism , Animals , Cattle , Dogs , Humans , Immunohistochemistry , Macaca , Rats , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...