Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Leukemia ; 38(5): 1143-1155, 2024 May.
Article in English | MEDLINE | ID: mdl-38467768

ABSTRACT

Hematopoietic stem and progenitor cells (HSPCs) maintain blood-forming and immune activity, yet intrinsic regulators of HSPCs remain elusive. STAT3 function in HSPCs has been difficult to dissect as Stat3-deficiency in the hematopoietic compartment induces systemic inflammation, which can impact HSPC activity. Here, we developed mixed bone marrow (BM) chimeric mice with inducible Stat3 deletion in 20% of the hematopoietic compartment to avoid systemic inflammation. Stat3-deficient HSPCs were significantly impaired in reconstitution ability following primary or secondary bone marrow transplantation, indicating hematopoietic stem cell (HSC) defects. Single-cell RNA sequencing of Lin-ckit+Sca1+ BM cells (LSKs) revealed aberrant activation of cell cycle, p53, and interferon (IFN) pathways in Stat3-deficient HSPCs. Stat3-deficient LSKs accumulated γH2AX and showed increased expression of DNA sensors and type-I IFN (IFN-I), while treatment with A151-ODN inhibited expression of IFN-I and IFN-responsive genes. Further, the blockade of IFN-I receptor signaling suppressed aberrant cell cycling, STAT1 activation, and nuclear p53 accumulation. Collectively, our results show that STAT3 inhibits a deleterious autocrine IFN response in HSCs to maintain long-term HSC function. These data signify the importance of ensuring therapeutic STAT3 inhibitors are targeted specifically to diseased cells to avoid off-target loss of healthy HSPCs.


Subject(s)
Autocrine Communication , Hematopoietic Stem Cells , Interferon Type I , STAT3 Transcription Factor , Animals , STAT3 Transcription Factor/metabolism , Mice , Hematopoietic Stem Cells/metabolism , Interferon Type I/metabolism , Signal Transduction , Mice, Inbred C57BL , Mice, Knockout
2.
Nat Cancer ; 5(2): 262-282, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38195932

ABSTRACT

The contribution of antitumor immunity to metastatic dormancy is poorly understood. Here we show that the long noncoding RNA Malat1 is required for tumor initiation and metastatic reactivation in mouse models of breast cancer and other tumor types. Malat1 localizes to nuclear speckles to couple transcription, splicing and mRNA maturation. In metastatic cells, Malat1 induces WNT ligands, autocrine loops to promote self-renewal and the expression of Serpin protease inhibitors. Through inhibition of caspase-1 and cathepsin G, SERPINB6B prevents gasdermin D-mediated induction of pyroptosis. In this way, SERPINB6B suppresses immunogenic cell death and confers evasion of T cell-mediated tumor lysis of incipient metastatic cells. On-target inhibition of Malat1 using therapeutic antisense nucleotides suppresses metastasis in a SERPINB6B-dependent manner. These results suggest that Malat1-induced expression of SERPINB6B can titrate pyroptosis and immune recognition at metastatic sites. Thus, Malat1 is at the nexus of tumor initiation, reactivation and immune evasion and represents a tractable and clinically relevant drug target.


Subject(s)
RNA, Long Noncoding , Animals , Mice , Cell Line, Tumor , Pyroptosis , RNA Splicing , RNA, Long Noncoding/genetics , T-Lymphocytes/metabolism
3.
bioRxiv ; 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38014033

ABSTRACT

Breast cancer metastatic relapse after a latency period, known as metastatic dormancy. Through genetic screening in mice, we identified the mediator complex subunit 4 (Med4) as a novel tumor-cell intrinsic gatekeeper in metastatic reactivation. Med4 downregulation effectively awakened dormant breast cancer cells, prompting macroscopic metastatic outgrowth in the lungs. Med4 depletion results in profound changes in nuclear size and three-dimensional chromatin architecture from compacted to relaxed states in contrast to the canonical function of the Mediator complex. These changes rewire the expression of extracellular matrix proteins, integrins, and signaling components resulting in integrin-mediated mechano-transduction and activation of YAP and MRTF. The assembly of stress fibers pulls on the nuclear membrane and contributes to reinforcing the overall chromatin modifications by Med4 depletion. MED4 gene deletions were observed in patients with metastatic breast cancer, and reduced MED4 expression correlates with worse prognosis, highlighting its significance as a potential biomarker for recurrence.

4.
Cell Rep ; 42(12): 113470, 2023 12 26.
Article in English | MEDLINE | ID: mdl-37979166

ABSTRACT

Epithelial-mesenchymal transition (EMT) empowers epithelial cells with mesenchymal and stem-like attributes, facilitating metastasis, a leading cause of cancer-related mortality. Hybrid epithelial-mesenchymal (E/M) cells, retaining both epithelial and mesenchymal traits, exhibit heightened metastatic potential and stemness. The mesenchymal intermediate filament, vimentin, is upregulated during EMT, enhancing the resilience and invasiveness of carcinoma cells. The phosphorylation of vimentin is critical to its structure and function. Here, we identify that stabilizing vimentin phosphorylation at serine 56 induces multinucleation, specifically in hybrid E/M cells with stemness properties but not epithelial or mesenchymal cells. Cancer stem-like cells are especially susceptible to vimentin-induced multinucleation relative to differentiated cells, leading to a reduction in self-renewal and stemness. As a result, vimentin-induced multinucleation leads to sustained inhibition of stemness properties, tumor initiation, and metastasis. These observations indicate that a single, targetable phosphorylation event in vimentin is critical for stemness and metastasis in carcinomas with hybrid E/M properties.


Subject(s)
Carcinoma , Intermediate Filaments , Humans , Vimentin/metabolism , Phosphorylation , Intermediate Filaments/metabolism , Intermediate Filaments/pathology , Carcinoma/pathology , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition , Neoplastic Stem Cells/metabolism , Cell Line, Tumor , Neoplasm Metastasis/pathology
5.
Trends Pharmacol Sci ; 44(4): 222-236, 2023 04.
Article in English | MEDLINE | ID: mdl-36828759

ABSTRACT

Metastatic colorectal cancer (mCRC) remains a lethal disease with an approximately 14% 5-year survival rate. While early-stage colorectal cancer (CRC) can be cured by surgery with or without adjuvant chemotherapy, mCRC cannot be eradicated due to a large burden of disseminated cancer cells comprising therapy-resistant metastasis-competent cells. To address this gap, recent studies have focused on further elucidating the molecular mechanisms underlying colorectal metastasis and recognizing the limitations of available therapeutic interventions. In this review, we discuss newfound factors that regulate CRC cell dissemination and colonization of distant organs, such as genetic mutations, identification of metastasis-initiating cells (MICs), epithelial-mesenchymal transition (EMT), and the tumor microenvironment (TME). We also review current treatments for mCRC, therapeutic regimens undergoing clinical trials, and trending preclinical studies being investigated to target treatment-resistant mCRC.


Subject(s)
Colorectal Neoplasms , Humans , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Epithelial-Mesenchymal Transition , Tumor Microenvironment
6.
bioRxiv ; 2023 Feb 11.
Article in English | MEDLINE | ID: mdl-36798265

ABSTRACT

STAT3 function in hematopoietic stem and progenitor cells (HSPCs) has been difficult to discern as Stat3 deficiency in the hematopoietic system induces systemic inflammation, which can impact HSPC activity. To address this, we established mixed bone marrow (BM) chimeric mice with CreER-mediated Stat3 deletion in 20% of the hematopoietic compartment. Stat3-deficient HSPCs had impaired hematopoietic activity and failed to undergo expansion in BM in contrast to Stat3-sufficient (CreER) controls. Single-cell RNA sequencing of Lin-ckit+Sca1+ BM cells revealed altered transcriptional responses in Stat3-deficient hematopoietic stem cells (HSCs) and multipotent progenitors, including intrinsic activation of cell cycle, stress response, and interferon signaling pathways. Consistent with their deregulation, Stat3-deficient Lin-ckit+Sca1+ cells accumulated γH2AX over time. Following secondary BM transplantation, Stat3-deficient HSPCs failed to reconstitute peripheral blood effectively, indicating a severe functional defect in the HSC compartment. Our results reveal essential roles for STAT3 in HSCs and suggest the potential for using targeted synthetic lethal approaches with STAT3 inhibition to remove defective or diseased HSPCs.

7.
Sci Adv ; 8(21): eabl9806, 2022 May 27.
Article in English | MEDLINE | ID: mdl-35613278

ABSTRACT

Semaphorins were originally identified as axonal guidance molecules, but they also control processes such as vascular development and tumorigenesis. The downstream signaling cascades of Semaphorins in these biological processes remain unclear. Here, we show that the class 3 Semaphorins (SEMA3s) activate the Hippo pathway to attenuate tissue growth, angiogenesis, and tumorigenesis. SEMA3B restoration in lung cancer cells with SEMA3B loss of heterozygosity suppresses cancer cell growth via activating the core Hippo kinases LATS1/2 (large tumor suppressor kinase 1/2). Furthermore, SEMA3 also acts through LATS1/2 to inhibit angiogenesis. We identified p190RhoGAPs as essential partners of the SEMA3A receptor PlexinA in Hippo regulation. Upon SEMA3 treatment, PlexinA interacts with the pseudo-guanosine triphosphatase (GTPase) domain of p190RhoGAP and simultaneously recruits RND GTPases to activate p190RhoGAP, which then stimulates LATS1/2. Disease-associated etiological factors, such as genetic lesions and oscillatory shear, diminish Hippo pathway regulation by SEMA3. Our study thus discovers a critical role of Hippo signaling in mediating SEMA3 physiological function.

8.
Cell Rep ; 39(1): 110595, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35385726

ABSTRACT

Bioinformatic analysis of 94 patient-derived xenografts (PDXs), cell lines, and organoids (PCOs) identifies three intrinsic transcriptional subtypes of metastatic castration-resistant prostate cancer: androgen receptor (AR) pathway + prostate cancer (PC) (ARPC), mesenchymal and stem-like PC (MSPC), and neuroendocrine PC (NEPC). A sizable proportion of castration-resistant and metastatic stage PC (M-CRPC) cases are admixtures of ARPC and MSPC. Analysis of clinical datasets and mechanistic studies indicates that MSPC arises from ARPC as a consequence of therapy-induced lineage plasticity. AR blockade with enzalutamide induces (1) transcriptional silencing of TP53 and hence dedifferentiation to a hybrid epithelial and mesenchymal and stem-like state and (2) inhibition of BMP signaling, which promotes resistance to AR inhibition. Enzalutamide-tolerant LNCaP cells re-enter the cell cycle in response to neuregulin and generate metastasis in mice. Combined inhibition of HER2/3 and AR or mTORC1 exhibits efficacy in models of ARPC and MSPC or MSPC, respectively. These results define MSPC, trace its origin to therapy-induced lineage plasticity, and reveal its sensitivity to HER2/3 inhibition.


Subject(s)
Antineoplastic Agents , Prostatic Neoplasms, Castration-Resistant , Signal Transduction , Animals , Antineoplastic Agents/pharmacology , Benzamides , Carcinoma, Neuroendocrine , Cell Line, Tumor , Cell Plasticity/drug effects , Cell Plasticity/physiology , Drug Resistance, Neoplasm , Humans , Male , Mice , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Nitriles , Phenylthiohydantoin , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Androgen/drug effects , Receptors, Androgen/metabolism , Tumor Microenvironment/drug effects , Tumor Microenvironment/physiology
9.
Mol Cancer Ther ; 20(9): 1584-1591, 2021 09.
Article in English | MEDLINE | ID: mdl-34224367

ABSTRACT

Inhibition of mTORC1 signaling has been shown to diminish growth of meningiomas and schwannomas in preclinical studies, and clinical data suggest that everolimus, an orally administered mTORC1 inhibitor, may slow tumor progression in a subset of patients with neurofibromatosis type 2 (NF2) with vestibular schwannoma. To assess the pharmacokinetics, pharmacodynamics, and potential mechanisms of treatment resistance, we performed a presurgical (phase 0) clinical trial of everolimus in patients undergoing elective surgery for vestibular schwannoma or meningiomas. Eligible patients with meningioma or vestibular schwannoma requiring tumor resection enrolled on study received everolimus 10 mg daily for 10 days immediately prior to surgery. Everolimus blood levels were determined immediately before and after surgery. Tumor samples were collected intraoperatively. Ten patients completed protocol therapy. Median pre- and postoperative blood levels of everolimus were found to be in a high therapeutic range (17.4 ng/mL and 9.4 ng/mL, respectively). Median tumor tissue drug concentration determined by mass spectrometry was 24.3 pg/mg (range, 9.2-169.2). We observed only partial inhibition of phospho-S6 in the treated tumors, indicating incomplete target inhibition compared with control tissues from untreated patients (P = 0.025). Everolimus led to incomplete inhibition of mTORC1 and downstream signaling. These data may explain the limited antitumor effect of everolimus observed in clinical studies for patients with NF2 and will inform the design of future preclinical and clinical studies targeting mTORC1 in meningiomas and schwannomas.


Subject(s)
Antineoplastic Agents/therapeutic use , Everolimus/therapeutic use , Meningeal Neoplasms/drug therapy , Meningioma/drug therapy , Neuroma, Acoustic/drug therapy , Adult , Aged , Clinical Trials as Topic , Female , Follow-Up Studies , Humans , Male , Meningeal Neoplasms/pathology , Meningioma/pathology , Middle Aged , Neuroma, Acoustic/pathology , Prognosis , Prospective Studies
10.
Prostate Cancer Prostatic Dis ; 24(4): 1080-1092, 2021 12.
Article in English | MEDLINE | ID: mdl-33903734

ABSTRACT

BACKGROUND AND OBJECTIVES: Transcriptomic landscape of prostate cancer (PCa) shows multidimensional variability, potentially arising from the cell-of-origin, reflected in serum markers, and most importantly related to drug sensitivities. For example, Aggressive Variant Prostate Cancer (AVPC) presents low PSA per tumor burden, and characterized by de novo resistance to androgen receptor signaling inhibitors (ARIs). Understanding PCa transcriptomic complexity can provide biological insight and therapeutic guidance. However, unsupervised clustering analysis is hindered by potential confounding factors such as stromal contamination and stress-related material degradation. MATERIALS AND METHODS: To focus on prostate epithelial cell-relevant heterogeneity, we defined 1,629 genes expressed by prostate epithelial cells by analyzing publicly available bulk and single- cell RNA sequencing data. Consensus clustering and CIBERSORT deconvolution were used for class discovery and proportion estimate analysis. The Cancer Genome Atlas Prostate Adenocarcinoma dataset served as a training set. The resulting clusters were analyzed in association with clinical, pathologic, and genomic characteristics and impact on survival. Serum markers PSA and PAP was analyzed to predict response to docetaxel chemotherapy in metastatic setting. RESULTS: We identified two luminal subtypes and two aggressive variant subtypes of PCa: luminal A (Adipogenic/AR-active/PSA-high) (30.0%); luminal S (Secretory/PAP-high) (26.0%); AVPC-I (Immune-infiltrative) (14.7%), AVPC-M (Myc-active) (4.2%), and mixed (25.0%). AVPC-I and AVPC-M subtypes predicted to be resistant to ARI and have low PSA per tumor burden. Luminal A and AVPC-M predicted to be resistant to docetaxel and have high PSA/PAP Ratio. Metastatic PCa patients with high PSA/PAP ratio (>20) had significantly shorter progression-free survival than those with low ratio (≤20) following docetaxel chemotherapy. CONCLUSION: We propose four prostate adenocarcinoma subtypes with distinct transcriptomic, genomic, and pathologic characteristics. PSA/PAP ratio in advanced cancer may aid in determining which patients would benefit from maximized androgen receptor inhibition or early use of antimicrotubule agents.


Subject(s)
Epithelial Cells/cytology , Gene Expression Profiling , Prostatic Neoplasms/genetics , Acid Phosphatase/blood , Adenocarcinoma/drug therapy , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/blood , Docetaxel/therapeutic use , Genomics , Humans , Male , Neoplasm Grading , Prostate-Specific Antigen/blood , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Retrospective Studies , Sequence Analysis, RNA , Transcriptome
13.
Cancer Cell ; 36(2): 139-155.e10, 2019 08 12.
Article in English | MEDLINE | ID: mdl-31327655

ABSTRACT

The mechanisms that enable immune evasion at metastatic sites are poorly understood. We show that the Polycomb Repressor Complex 1 (PRC1) drives colonization of the bones and visceral organs in double-negative prostate cancer (DNPC). In vivo genetic screening identifies CCL2 as the top prometastatic gene induced by PRC1. CCL2 governs self-renewal and induces the recruitment of M2-like tumor-associated macrophages and regulatory T cells, thus coordinating metastasis initiation with immune suppression and neoangiogenesis. A catalytic inhibitor of PRC1 cooperates with immune checkpoint therapy to reverse these processes and suppress metastasis in genetically engineered mouse transplantation models of DNPC. These results reveal that PRC1 coordinates stemness with immune evasion and neoangiogenesis and point to the potential clinical utility of targeting PRC1 in DNPC.


Subject(s)
Adenocarcinoma/metabolism , Cell Movement , Cell Self Renewal , Chemokine CCL2/metabolism , Neoplastic Stem Cells/metabolism , Polycomb Repressive Complex 1/metabolism , Prostatic Neoplasms/metabolism , Tumor Escape , Adenocarcinoma/drug therapy , Adenocarcinoma/immunology , Adenocarcinoma/secondary , Animals , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Movement/drug effects , Cell Self Renewal/drug effects , Chemokine CCL2/genetics , Enzyme Inhibitors/pharmacology , Gene Expression Regulation, Neoplastic , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Macrophages/immunology , Macrophages/metabolism , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout , Mice, Nude , Mice, SCID , Neoplasm Metastasis , Neoplastic Stem Cells/immunology , Neoplastic Stem Cells/pathology , PC-3 Cells , Polycomb Repressive Complex 1/antagonists & inhibitors , Polycomb Repressive Complex 1/genetics , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/immunology , Prostatic Neoplasms/pathology , Receptors, Androgen/deficiency , Receptors, Androgen/genetics , Receptors, CCR4/genetics , Receptors, CCR4/metabolism , Signal Transduction , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Tumor Escape/drug effects , Xenograft Model Antitumor Assays
14.
Trends Cancer ; 5(7): 440-455, 2019 07.
Article in English | MEDLINE | ID: mdl-31311658

ABSTRACT

In spite of an initial clinical response to androgen deprivation therapy (ADT), the majority of prostate cancer patients eventually develop castration-resistant prostate cancer (CRPC). Recent studies have highlighted the role of epithelial plasticity, including transdifferentiation and epithelial-to-mesenchymal transition (EMT), in the development of AR pathway-negative CRPC, a form of the disease that has increased in incidence after the introduction of potent AR inhibitors. In this review, we will discuss the switches between different cell fates that occur in response to AR blockade or acquisition of specific oncogenic mutations, such as those in TP53 and RB1, during the evolution to CRPC. We highlight the urgent need to dissect the mechanistic underpinnings of these transitions and identify novel vulnerabilities that can be targeted therapeutically.


Subject(s)
Clonal Evolution , Epithelium/metabolism , Neoplastic Stem Cells/metabolism , Prostatic Neoplasms/etiology , Prostatic Neoplasms/metabolism , Receptors, Androgen/metabolism , Antineoplastic Agents, Hormonal/pharmacology , Antineoplastic Agents, Hormonal/therapeutic use , Cell Plasticity , Drug Resistance, Neoplasm/genetics , Epithelial-Mesenchymal Transition/genetics , Epithelium/pathology , Humans , Male , Neoplastic Stem Cells/pathology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology
15.
Sci Transl Med ; 11(497)2019 06 19.
Article in English | MEDLINE | ID: mdl-31217338

ABSTRACT

The activated B cell (ABC-like) subtype of diffuse large B cell lymphoma (DLBCL) is characterized by chronic activation of signaling initiated by immunoglobulin µ (IgM). By analyzing the DNA copy number profiles of 1000 DLBCL tumors, we identified gains of 18q21.2 as the most frequent genetic alteration in ABC-like DLBCL. Using integrative analysis of matched gene expression profiling data, we found that the TCF4 (E2-2) transcription factor gene was the target of these alterations. Overexpression of TCF4 in ABC-like DLBCL cell lines led to its occupancy on immunoglobulin (IGHM) and MYC gene enhancers and increased expression of these genes at the transcript and protein levels. Inhibition of TCF4 activity with dominant-negative constructs was synthetically lethal to ABC-like DLBCL cell lines harboring TCF4 DNA copy gains, highlighting these gains as an attractive potential therapeutic target. Furthermore, the TCF4 gene was one of the top BRD4-regulated genes in DLBCL cell lines. BET proteolysis-targeting chimera (PROTAC) ARV771 extinguished TCF4, MYC, and IgM expression and killed ABC-like DLBCL cells in vitro. In DLBCL xenograft models, ARV771 treatment reduced tumor growth and prolonged survival. This work highlights a genetic mechanism for promoting immunoglobulin signaling in ABC-like DLBCL and provides a functional rationale for the use of BET inhibitors in this disease.


Subject(s)
Immunoglobulins/metabolism , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/metabolism , Transcription Factor 4/genetics , Animals , Blotting, Western , Cell Line , Cell Survival , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/genetics , High-Throughput Nucleotide Sequencing , Humans , Male , Mice , Mice, Nude , Signal Transduction/genetics , Signal Transduction/physiology , Xenograft Model Antitumor Assays
16.
Nat Cell Biol ; 21(4): 534, 2019 04.
Article in English | MEDLINE | ID: mdl-30842593

ABSTRACT

In the version of this Article originally published the same blot was inadvertently presented as both p-Rb and Cyclin A in Fig. 2a. This blot corresponds to the p-Rb panel, as can be seen in the unprocessed version of these blots in Supplementary Fig. 9. The corrected version of the panel is shown below, together with a completely uncropped image of both blots. In addition, in the 'Viral transduction' section of the Methods, the pLKO.1 plasmids encoding short hairpin RNAs targeting human Rnd1 were incorrectly listed as clones TRCN0000018338 and TRCN0000039977. The correct clone numbers are TRCN0000047434 and TRCN0000047435.

17.
Cancer Cell ; 35(3): 347-367, 2019 03 18.
Article in English | MEDLINE | ID: mdl-30889378

ABSTRACT

Integrins mediate cell adhesion and transmit mechanical and chemical signals to the cell interior. Various mechanisms deregulate integrin signaling in cancer, empowering tumor cells with the ability to proliferate without restraint, to invade through tissue boundaries, and to survive in foreign microenvironments. Recent studies have revealed that integrin signaling drives multiple stem cell functions, including tumor initiation, epithelial plasticity, metastatic reactivation, and resistance to oncogene- and immune-targeted therapies. Here, we discuss the mechanisms leading to the deregulation of integrin signaling in cancer and its various consequences. We place emphasis on novel functions, determinants of context dependency, and mechanism-based therapeutic opportunities.


Subject(s)
Integrins/metabolism , Neoplasms/metabolism , Neoplastic Stem Cells/metabolism , Cell Plasticity , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Humans , Mechanotransduction, Cellular , Signal Transduction
18.
Nat Cell Biol ; 21(3): 408, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30542103

ABSTRACT

In the version of this Article originally published, the authors inadvertently included the term 'pericytic mimicry' in relation to ref. 54. This has now been corrected by inserting an additional reference at position 51 and amending the text in the Discussion relating to 'pericytic mimicry', ref. 54 and pericyte-like spreading. The original refs 51-70 have also been renumbered. Furthermore, Fig. 8l has been amended to remove the term 'pericyte mimicry' that the authors had included inadvertently during figure preparation. These corrections have been made in the online versions of the Article.

19.
Nat Cell Biol ; 20(8): 966-978, 2018 08.
Article in English | MEDLINE | ID: mdl-30038252

ABSTRACT

Metastatic seeding by disseminated cancer cells principally occurs in perivascular niches. Here, we show that mechanotransduction signalling triggered by the pericyte-like spreading of disseminated cancer cells on host tissue capillaries is critical for metastatic colonization. Disseminated cancer cells employ L1CAM (cell adhesion molecule L1) to spread on capillaries and activate the mechanotransduction effectors YAP (Yes-associated protein) and MRTF (myocardin-related transcription factor). This spreading is robust enough to displace resident pericytes, which also use L1CAM for perivascular spreading. L1CAM activates YAP by engaging ß1 integrin and ILK (integrin-linked kinase). L1CAM and YAP signalling enables the outgrowth of metastasis-initiating cells both immediately following their infiltration of target organs and after they exit from a period of latency. Our results identify an important step in the initiation of metastatic colonization, define its molecular constituents and provide an explanation for the widespread association of L1CAM with metastatic relapse in the clinic.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Brain Neoplasms/metabolism , Brain Neoplasms/secondary , Capillaries/metabolism , Cell Adhesion , Cell Movement , Cell Shape , Pericytes/metabolism , Phosphoproteins/metabolism , Trans-Activators/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Brain Neoplasms/genetics , Capillaries/pathology , Cell Communication , Cell Proliferation , Female , HCT116 Cells , HEK293 Cells , Humans , Integrin beta1/genetics , Integrin beta1/metabolism , Male , Mechanotransduction, Cellular , Mice, Inbred C57BL , Mice, Inbred NOD , Neural Cell Adhesion Molecule L1/genetics , Neural Cell Adhesion Molecule L1/metabolism , Pericytes/pathology , Phosphoproteins/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Time Factors , Tissue Culture Techniques , Trans-Activators/genetics , Transcription Factors , Tumor Microenvironment , YAP-Signaling Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...