Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
medRxiv ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38952780

ABSTRACT

Introduction: HIV drug resistance poses a challenge to the United Nation's goal of ending the HIV/AIDS epidemic. The integrase strand transfer inhibitor (InSTI) dolutegravir, which has a higher resistance barrier, was endorsed by the World Health Organization in 2019 for first-, second-, and third-line antiretroviral therapy (ART). This multiplicity of roles of dolutegravir in ART may facilitate the emergence of dolutegravir resistance. Methods and analysis: DTG RESIST is a multicentre longitudinal study of adults and adolescents living with HIV in sub-Saharan Africa, Asia, and South and Central America who experienced virologic failure on dolutegravir-based ART. At the time of virologic failure whole blood will be collected and processed to prepare plasma or dried blood spots. Laboratories in Durban, Mexico City and Bangkok will perform genotyping. Analyses will focus on (i) individuals who experienced virologic failure on dolutegravir, and (ii) on those who started or switched to such a regimen and were at risk of virologic failure. For population (i), the outcome will be any InSTI drug resistance mutations, and for population (ii) virologic failure defined as a viral load >1000 copies/mL. Phenotypic testing will focus on non-B subtype viruses with major InSTI resistance mutations. Bayesian evolutionary models will explore and predict treatment failure genotypes. The study will have intermediate statistical power to detect differences in resistance mutation prevalence between major HIV-1 subtypes; ample power to identify risk factors for virologic failure and limited power for analysing factors associated with individual InSTI drug resistance mutations. Ethics and dissemination: The research protocol was approved by the Biomedical Research Ethics Committee at the University of KwaZulu-Natal, South Africa, and the Ethics Committee of the Canton of Bern, Switzerland. All sites participate in IeDEA and have obtained ethics approval from their local ethics committee to conduct the additional data collection. Registration: NCT06285110. Strengths and limitations of this study: - DTG RESIST is a large international study to prospectively examine emergent dolutegravir resistance in diverse settings characterised by different HIV-1 subtypes, provision of ART, and guidelines on resistance testing. - Embedded within the International epidemiology Databases to Evaluate AIDS (IeDEA), DTG RESIST will benefit from harmonized clinical data across participating sites and expertise in clinical, epidemiological, biological, and computational fields. - Procedures for sequencing and assembling genomes from different HIV-1 strains will be developed at the heart of the HIV epidemic, by the KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), in Durban, South Africa. Phenotypic testing, Genome Wide Association Study (GWAS) methods and Bayesian evolutionary models will explore and predict treatment failure genotypes. - A significant limitation is the absence of genotypic resistance data from participants before they started dolutegravir treatment, as collecting and bio-banking pre-treatment samples was not feasible at most IeDEA sites. Consistent and harmonized data on adherence to treatment are also lacking. - The distribution of HIV-1 subtypes across different sites is uncertain, which may limit the statistical power of the study in analysing patterns and risk factors for dolutegravir resistance. The results from GWAS and Bayesian modelling analyses will be preliminary and hypothesis-generating.

2.
J Infect Dis ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38748986

ABSTRACT

BACKGROUND: Tenofovir/lamivudine/dolutegravir (TLD) is the preferred first-line antiretroviral therapy (ART) regimen for people with HIV (PWH), including those who were previously virologically suppressed on non-nucleoside reverse transcriptase inhibitors (NNRTIs). We sought to estimate the real-world effectiveness of the TLD transition in Ugandan public-sector clinics. METHODS: We conducted a prospective cohort study of PWH ≥18 years who were transitioned from NNRTI-based ART to TLD. Study visits were conducted on the day of TLD transition and 24- and 48- weeks later. The primary endpoint was viral suppression (<200 copies/mL) at 48-weeks. We collected blood for retrospective viral load (VL) assessment and conducted genotypic resistance tests for specimens with VL >500 copies/mL. RESULTS: We enrolled 500 participants (median age of 47 years; 41% women). At 48-weeks after TLD transition, 94% of participants were in care with a VL <200 copies/mL (n = 469/500); 2% (n = 11/500) were lost from care or died; and only 2% (n = 9/500) had a VL >500 copies/mL. No incident resistance to DTG was identified. Few participants (2%, n = 9/500) discontinued TLD due to adverse events. CONCLUSIONS: High rates of viral suppression, high tolerability, and lack of emergent drug resistance support use of TLD as the preferred first-line regimen in the region.

3.
medRxiv ; 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38293032

ABSTRACT

Chronic hepatitis B virus (HBV) infection remains a significant public health concern, particularly in Africa, where there is a substantial burden. HBV is an enveloped virus, with isolates being classified into ten phylogenetically distinct genotypes (A - J) determined based on full-genome sequence data or reverse hybridization-based diagnostic tests. In practice, limitations are noted in that diagnostic sequencing, generally using Sanger sequencing, tends to focus only on the S-gene, yielding little or no information on intra-patient HBV genetic diversity with very low-frequency variants and reverse hybridization detects only known genotype-specific mutations. To resolve these limitations, we developed an Oxford Nanopore Technology (ONT)-based HBV genotyping protocol suitable for clinical virology, yielding complete HBV genome sequences and extensive data on intra-patient HBV diversity. Specifically, the protocol involves tiling-based PCR amplification of HBV sequences, library preparation using the ONT Rapid Barcoding Kit, ONT GridION sequencing, genotyping using Genome Detective software, recombination analysis using jpHMM and RDP5 software, and drug resistance profiling using Geno2pheno software. We prove the utility of our protocol by efficiently generating and characterizing high-quality near full-length HBV genomes from 148 left-over diagnostic Hepatitis B patient samples obtained in the Western Cape province of South Africa, providing valuable insights into the genetic diversity and epidemiology of HBV in this region of the world.

4.
Article in English | MEDLINE | ID: mdl-38063008

ABSTRACT

We evaluated the prevalence and correlates of HIV viral nonsuppression and HIV drug resistance (HIV-DR) in a cohort of people who inject drugs living with HIV (PWID-LH) and their sexual and injecting partners living with HIV in Kenya. HIV-DR testing was performed on participants with viral nonsuppression. Of 859 PWID-LH and their partners, 623 (72.5%) were on antiretroviral therapy (ART) ≥4 months and 148/623 (23.8%) were not virally suppressed. Viral nonsuppression was more common among younger participants and those on ART for a shorter duration. Among 122/148 (82.4%) successfully sequenced samples, 55 (45.1%) had detectable major HIV-DR mutations, mainly to non-nucleoside and nucleotide reverse transcriptase inhibitors (NNRTI and NRTI). High levels of HIV-DR among those with viral nonsuppression suggests need for viral load monitoring, adherence counseling, and timely switching to alternate ART regimens in this key population.

5.
medRxiv ; 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38014099

ABSTRACT

Chikungunya (CHIKV) is a re-emerging endemic arbovirus in West Africa. Since July 2023, Senegal and Burkina Faso have been experiencing an ongoing outbreak, with over 300 confirmed cases detected so far in the regions of Kédougou and Tambacounda in Senegal, the largest recorded outbreak yet. CHIKV is typically maintained in a sylvatic cycle in Senegal but its evolution and factors contributing to re-emergence are so far unknown in West Africa, leaving a gap in understanding and responding to recurrent epidemics. We produced, in real-time, the first locally-generated and publicly available CHIKV whole genomes in West Africa, to characterize the genetic diversity of circulating strains, along with phylodynamic analysis to estimate time of emergence and population growth dynamics. A novel strain of the West African genotype, phylogenetically distinct from strains circulating in previous outbreaks, was identified. This suggests a likely new spillover from sylvatic cycles in rural Senegal and potential of seeding larger epidemics in urban settings in Senegal and elsewhere.

6.
Influenza Other Respir Viruses ; 17(9): e13198, 2023 09.
Article in English | MEDLINE | ID: mdl-37744993

ABSTRACT

Background: In Angola, COVID-19 cases have been reported in all provinces, resulting in >105,000 cases and >1900 deaths. However, no detailed genomic surveillance into the introduction and spread of the SARS-CoV-2 virus has been conducted in Angola. We aimed to investigate the emergence and epidemic progression during the peak of the COVID-19 pandemic in Angola. Methods: We generated 1210 whole-genome SARS-CoV-2 sequences, contributing West African data to the global context, that were phylogenetically compared against global strains. Virus movement events were inferred using ancestral state reconstruction. Results: The epidemic in Angola was marked by four distinct waves of infection, dominated by 12 virus lineages, including VOCs, VOIs, and the VUM C.16, which was unique to South-Western Africa and circulated for an extended period within the region. Virus exchanges occurred between Angola and its neighboring countries, and strong links with Brazil and Portugal reflected the historical and cultural ties shared between these countries. The first case likely originated from southern Africa. Conclusion: A lack of a robust genome surveillance network and strong dependence on out-of-country sequencing limit real-time data generation to achieve timely disease outbreak responses, which remains of the utmost importance to mitigate future disease outbreaks in Angola.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Angola/epidemiology , Molecular Epidemiology , Pandemics
8.
J Clin Virol ; 165: 105498, 2023 08.
Article in English | MEDLINE | ID: mdl-37329842

ABSTRACT

BACKGROUND: Concerns around accuracy and performance of rapid antigen tests continue to be raised with the emergence of new SARS-CoV-2 variants. OBJECTIVE: To evaluate the performance of two widely used SARS-CoV-2 rapid antigen tests during BA.4/BA.5 SARS-CoV-2 wave in South Africa (May - June 2022). STUDY DESIGN: A prospective field evaluation compared the SARS-CoV-2 Antigen Rapid test from Hangzhou AllTest Biotech (nasal swab) and the Standard Q COVID-19 Rapid Antigen test from SD Biosensor (nasopharyngeal swab) to the Abbott RealTime SARS-CoV-2 assay (nasopharyngeal swab) on samples collected from 540 study participants. RESULTS: Overall 28.52% (154/540) were SARS-CoV-2 RT-PCR positive with median cycle number value of 12.30 (IQR 9.30-19.40). Out of the 99 successfully sequenced SARS-CoV-2 positive samples, 18 were classified as BA.4 and 56 were classified as BA.5. The overall sensitivities of the AllTest SARS-CoV-2 Ag test and Standard Q COVID-19 Ag test were 73.38% (95% CI 65.89-79.73) and 74.03% (95% CI 66.58-80.31) and their specificities were 97.41% (95% CI 95.30-98.59) and 99.22% (95% CI 97.74-99.74) respectively. Sensitivity was >90% when the cycle number value was <20. The sensitivity of both rapid tests was >90% in samples infected with Omicron sub-lineage BA.4 and BA.5. CONCLUSION: Accuracy of tested rapid antigen tests that target the nucleocapsid SARS-CoV-2 protein, were not adversely affected by BA.4 and BA.5 Omicron sub-variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , South Africa , COVID-19/diagnosis , Biological Assay , Nucleocapsid Proteins , Sensitivity and Specificity
9.
Viruses ; 15(5)2023 05 18.
Article in English | MEDLINE | ID: mdl-37243279

ABSTRACT

SARS-CoV-2 lineages and variants of concern (VOC) have gained more efficient transmission and immune evasion properties with time. We describe the circulation of VOCs in South Africa and the potential role of low-frequency lineages on the emergence of future lineages. Whole genome sequencing was performed on SARS-CoV-2 samples from South Africa. Sequences were analysed with Nextstrain pangolin tools and Stanford University Coronavirus Antiviral & Resistance Database. In 2020, 24 lineages were detected, with B.1 (3%; 8/278), B.1.1 (16%; 45/278), B.1.1.348 (3%; 8/278), B.1.1.52 (5%; 13/278), C.1 (13%; 37/278) and C.2 (2%; 6/278) circulating during the first wave. Beta emerged late in 2020, dominating the second wave of infection. B.1 and B.1.1 continued to circulate at low frequencies in 2021 and B.1.1 re-emerged in 2022. Beta was outcompeted by Delta in 2021, which was thereafter outcompeted by Omicron sub-lineages during the 4th and 5th waves in 2022. Several significant mutations identified in VOCs were also detected in low-frequency lineages, including S68F (E protein); I82T (M protein); P13L, R203K and G204R/K (N protein); R126S (ORF3a); P323L (RdRp); and N501Y, E484K, D614G, H655Y and N679K (S protein). Low-frequency variants, together with VOCs circulating, may lead to convergence and the emergence of future lineages that may increase transmissibility, infectivity and escape vaccine-induced or natural host immunity.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Animals , SARS-CoV-2/genetics , COVID-19/epidemiology , Molecular Epidemiology , Databases, Factual , Drug Resistance, Viral , Mutation , Pangolins , Spike Glycoprotein, Coronavirus
10.
PLoS One ; 18(5): e0286373, 2023.
Article in English | MEDLINE | ID: mdl-37253027

ABSTRACT

Intra-host diversity studies are used to characterise the mutational heterogeneity of SARS-CoV-2 infections in order to understand the impact of virus-host adaptations. This study investigated the frequency and diversity of the spike (S) protein mutations within SARS-CoV-2 infected South African individuals. The study included SARS-CoV-2 respiratory samples, from individuals of all ages, received at the National Health Laboratory Service at Charlotte Maxeke Johannesburg Academic hospital, Gauteng, South Africa, from June 2020 to May 2022. Single nucleotide polymorphism (SNP) assays and whole genome sequencing were performed on a random selection of SARS-CoV-2 positive samples. The allele frequency (AF) was determined using TaqMan Genotyper software for SNP PCR analysis and galaxy.eu for analysis of FASTQ reads from sequencing. The SNP assays identified 5.3% (50/948) of Delta cases with heterogeneity at delY144 (4%; 2/50), E484Q (6%; 3/50), N501Y (2%; 1/50) and P681H (88%; 44/50), however only heterogeneity for E484Q and delY144 were confirmed by sequencing. From sequencing we identified 9% (210/2381) of cases with Beta, Delta, Omicron BA.1, BA.2.15, and BA.4 lineages that had heterogeneity in the S protein. Heterogeneity was primarily identified at positions 19 (1.4%) with T19IR (AF 0.2-0.7), 371 (92.3%) with S371FP (AF 0.1-1.0), and 484 (1.9%) with E484AK (0.2-0.7), E484AQ (AF 0.4-0.5) and E484KQ (AF 0.1-0.4). Mutations at heterozygous amino acid positions 19, 371 and 484 are known antibody escape mutations, however the impact of the combination of multiple substitutions identified at the same position is unknown. Therefore, we hypothesise that intra-host SARS-CoV-2 quasispecies with heterogeneity in the S protein facilitate competitive advantage of variants that can completely/partially evade host's natural and vaccine-induced immune responses.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , South Africa/epidemiology , COVID-19/epidemiology , Spike Glycoprotein, Coronavirus/genetics
11.
PLoS One ; 18(4): e0283219, 2023.
Article in English | MEDLINE | ID: mdl-37099540

ABSTRACT

The global pandemic caused by SARS-CoV-2 has increased the demand for scalable sequencing and diagnostic methods, especially for genomic surveillance. Although next-generation sequencing has enabled large-scale genomic surveillance, the ability to sequence SARS-CoV-2 in some settings has been limited by the cost of sequencing kits and the time-consuming preparations of sequencing libraries. We compared the sequencing outcomes, cost and turn-around times obtained using the standard Illumina DNA Prep kit protocol to three modified protocols with fewer clean-up steps and different reagent volumes (full volume, half volume, one-tenth volume). We processed a single run of 47 samples under each protocol and compared the yield and mean sequence coverage. The sequencing success rate and quality for the four different reactions were as follows: the full reaction was 98.2%, the one-tenth reaction was 98.0%, the full rapid reaction was 97.5% and the half-reaction, was 97.1%. As a result, uniformity of sequence quality indicated that libraries were not affected by the change in protocol. The cost of sequencing was reduced approximately seven-fold and the time taken to prepare the library was reduced from 6.5 hours to 3 hours. The sequencing results obtained using the miniaturised volumes showed comparability to the results obtained using full volumes as described by the manufacturer. The adaptation of the protocol represents a lower-cost, streamlined approach for SARS-CoV-2 sequencing, which can be used to produce genomic data quickly and more affordably, especially in resource-constrained settings.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Whole Genome Sequencing/methods , High-Throughput Nucleotide Sequencing/methods , Gene Library
12.
Afr J Lab Med ; 12(1): 1975, 2023.
Article in English | MEDLINE | ID: mdl-36873290

ABSTRACT

Background: Rifampicin resistance missed by commercial rapid molecular assays but detected by phenotypic assays may lead to discordant susceptibility results and affect patient management. Objective: This study was conducted to evaluate the causes of rifampicin resistance missed by the GenoType MTBDRplus and its impact on the programmatic management of tuberculosis in KwaZulu-Natal, South Africa. Methods: We analysed routine tuberculosis programme data from January 2014 to December 2014 on isolates showing rifampicin susceptibility on the GenoType MTBDRplus assay but resistance on the phenotypic agar proportion method. Whole-genome sequencing was performed on a subset of these isolates. Results: Out of 505 patients with isoniazid mono-resistant tuberculosis on the MTBDRplus, 145 (28.7%) isolates showed both isoniazid and rifampicin resistance on the phenotypic assay. The mean time from MTBDRplus results to initiation of drug-resistant tuberculosis therapy was 93.7 days. 65.7% of the patients had received previous tuberculosis treatment. The most common mutations detected in the 36 sequenced isolates were I491F (16; 44.4%) and L452P (12; 33.3%). Among the 36 isolates, resistance to other anti-tuberculosis drugs was 69.4% for pyrazinamide, 83.3% for ethambutol, 69.4% for streptomycin, and 50% for ethionamide. Conclusion: Missed rifampicin resistance was mostly due to the I491F mutation located outside the MTBDRplus detection area and the L452P mutation, which was not included in the initial version 2 of the MTBDRplus. This led to substantial delays in the initiation of appropriate therapy. The previous tuberculosis treatment history and the high level of resistance to other anti-tuberculosis drugs suggest an accumulation of resistance.

13.
Genes (Basel) ; 14(3)2023 03 13.
Article in English | MEDLINE | ID: mdl-36980977

ABSTRACT

Ethiopia is the second most populous country in Africa and the sixth most affected by COVID-19 on the continent. Despite having experienced five infection waves, >499,000 cases, and ~7500 COVID-19-related deaths as of January 2023, there is still no detailed genomic epidemiological report on the introduction and spread of SARS-CoV-2 in Ethiopia. In this study, we reconstructed and elucidated the COVID-19 epidemic dynamics. Specifically, we investigated the introduction, local transmission, ongoing evolution, and spread of SARS-CoV-2 during the first four infection waves using 353 high-quality near-whole genomes sampled in Ethiopia. Our results show that whereas viral introductions seeded the first wave, subsequent waves were seeded by local transmission. The B.1.480 lineage emerged in the first wave and notably remained in circulation even after the emergence of the Alpha variant. The B.1.480 was outcompeted by the Delta variant. Notably, Ethiopia's lack of local sequencing capacity was further limited by sporadic, uneven, and insufficient sampling that limited the incorporation of genomic epidemiology in the epidemic public health response in Ethiopia. These results highlight Ethiopia's role in SARS-CoV-2 dissemination and the urgent need for balanced, near-real-time genomic sequencing.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Molecular Epidemiology , SARS-CoV-2/genetics , Ethiopia/epidemiology , COVID-19/epidemiology , COVID-19/genetics
14.
PLOS Glob Public Health ; 3(3): e0001593, 2023.
Article in English | MEDLINE | ID: mdl-36963096

ABSTRACT

Mozambique reported the first case of coronavirus disease 2019 (COVID-19) in March 2020 and it has since spread to all provinces in the country. To investigate the introductions and spread of SARS-CoV-2 in Mozambique, 1 142 whole genome sequences sampled within Mozambique were phylogenetically analyzed against a globally representative set, reflecting the first 25 months of the epidemic. The epidemic in the country was marked by four waves of infection, the first associated with B.1 ancestral lineages, while the Beta, Delta, and Omicron Variants of Concern (VOCs) were responsible for most infections and deaths during the second, third, and fourth waves. Large-scale viral exchanges occurred during the latter three waves and were largely attributed to southern African origins. Not only did the country remain vulnerable to the introductions of new variants but these variants continued to evolve within the borders of the country. Due to the Mozambican health system already under constraint, and paucity of data in Mozambique, there is a need to continue to strengthen and support genomic surveillance in the country as VOCs and Variants of interests (VOIs) are often reported from the southern African region.

15.
JCI Insight ; 8(3)2023 02 08.
Article in English | MEDLINE | ID: mdl-36602861

ABSTRACT

HIV nonprogression despite persistent viremia is rare among adults who are naive to antiretroviral therapy (ART) but relatively common among ART-naive children. Previous studies indicate that ART-naive pediatric slow progressors (PSPs) adopt immune evasion strategies similar to those described in natural hosts of SIV. However, the mechanisms underlying this immunophenotype are not well understood. In a cohort of early-treated infants who underwent analytical treatment interruption (ATI) after 12 months of ART, expression of PD-1 on CD8+ T cells immediately before ATI was the main predictor of slow progression during ATI. PD-1+CD8+ T cell frequency was also negatively correlated with CCR5 and HLA-DR expression on CD4+ T cells and predicted stronger HIV-specific T lymphocyte responses. In the CD8+ T cell compartment of PSPs, we identified an enrichment of stem-like TCF-1+PD-1+ memory cells, whereas pediatric progressors and viremic adults had a terminally exhausted PD-1+CD39+ population. TCF-1+PD-1+ expression on CD8+ T cells was associated with higher proliferative activity and stronger Gag-specific effector functionality. These data prompted the hypothesis that the proliferative burst potential of stem-like HIV-specific cytotoxic cells could be exploited in therapeutic strategies to boost the antiviral response and facilitate remission in infants who received early ART with a preserved and nonexhausted T cell compartment.


Subject(s)
HIV Infections , Programmed Cell Death 1 Receptor , Humans , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Phenotype , Programmed Cell Death 1 Receptor/metabolism
16.
Front Immunol ; 13: 912038, 2022.
Article in English | MEDLINE | ID: mdl-36330531

ABSTRACT

Lymphoid tissues are an important HIV reservoir site that persists in the face of antiretroviral therapy and natural immunity. Targeting these reservoirs by harnessing the antiviral activity of local tissue-resident memory (TRM) CD8+ T-cells is of great interest, but limited data exist on TRM-like cells within lymph nodes of people living with HIV (PLWH). Here, we studied tonsil CD8+ T-cells obtained from PLWH and uninfected controls from South Africa. We show that these cells are preferentially located outside the germinal centers (GCs), the main reservoir site for HIV, and display a low cytolytic and a transcriptionally TRM-like profile distinct from blood CD8+ T-cells. In PLWH, CD8+ TRM-like cells are expanded and adopt a more cytolytic, activated, and exhausted phenotype not reversed by antiretroviral therapy (ART). This phenotype was enhanced in HIV-specific CD8+ T-cells from tonsils compared to matched blood suggesting a higher antigen burden in tonsils. Single-cell transcriptional and clonotype resolution showed that these HIV-specific CD8+ T-cells in the tonsils express heterogeneous signatures of T-cell activation, clonal expansion, and exhaustion ex-vivo. Interestingly, this signature was absent in a natural HIV controller, who expressed lower PD-1 and CXCR5 levels and reduced transcriptional evidence of T-cell activation, exhaustion, and cytolytic activity. These data provide important insights into lymphoid tissue-derived HIV-specific CD8+ TRM-like phenotypes in settings of HIV remission and highlight their potential for immunotherapy and targeting of the HIV reservoirs.


Subject(s)
CD8-Positive T-Lymphocytes , HIV Infections , Humans , Immunologic Memory , Palatine Tonsil , Receptors, CXCR5 , HIV Infections/drug therapy
18.
Antivir Ther ; 27(5): 13596535221114822, 2022 10.
Article in English | MEDLINE | ID: mdl-36263960

ABSTRACT

BACKGROUND: Relationships between distinct antiretroviral therapy (ART) adherence patterns and risk of drug resistance are not well understood. METHODS: We conducted a nested case-control analysis within a longitudinal cohort study of individuals initiating efavirenz-based ART. Primary outcomes of interest, measured at 6 and 12 months after treatment initiation, were: 1) virologic suppression, 2) virologic failure with resistance, and 3) virologic failure without resistance. Our primary exposure of interest was ART adherence, measured over the 6 months before each visit with electronic pill monitors, and categorized in three ways: 1) 6 months average adherence; 2) running adherence, defined as the proportion of days with average adherence over 9 days of less than or equal to 10%, 20%, and 30%; and 3) number of 3-, 7-, and 28-day treatment gaps in the prior 6 months. RESULTS: We analyzed data from 166 individuals (107 had virologic failure during observation and 59 had virologic suppression at 6 and 12 months). Average adherence was higher among those with virologic suppression (median 83%, IQR 58-96%) versus those with virologic failure with resistance (median 35%, IQR 20-77%, pairwise P < 0.01) and those with virologic failure without resistance (median 21%, IQR 2-54%, pairwise P < 0.01). Although treatment gaps generally predicted virologic failure (P < 0.01), they did not differentiate failure with and without drug resistance (P > 0.6). CONCLUSIONS: Average adherence patterns, but not the assessed frequency of treatment gaps, differentiated failure with versus without drug resistance among individuals initiating efavirenz-based ART. Future work should explore adherence-resistance relationships for integrase inhibitor-based regimens.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV Integrase Inhibitors , Humans , Case-Control Studies , Longitudinal Studies , South Africa/epidemiology , Uganda/epidemiology , HIV Infections/drug therapy , Anti-Retroviral Agents/therapeutic use , HIV Integrase Inhibitors/therapeutic use , Drug Resistance , Viral Load , Anti-HIV Agents/therapeutic use , Treatment Failure
19.
Viruses ; 14(9)2022 09 09.
Article in English | MEDLINE | ID: mdl-36146798

ABSTRACT

HIV drug resistance (HIVDR) can become a public health concern, especially in low- and middle-income countries where genotypic testing for people initiating antiretroviral therapy (ART) is not available. For first-line regimens to remain effective, levels of transmitted drug resistance (TDR) need to be monitored over time. To determine the temporal trends of TDR in Mozambique, a search for studies in PubMed and sequences in GenBank was performed. Only studies covering the pol region that described HIVDR and genetic diversity from treatment naïve patients were included. A dataset from seven published studies and one novel unpublished study conducted between 1999 and 2018 were included. The Calibrated Population Resistance tool (CPR) and REGA HIV-1 Subtyping Tool version 3 for sequences pooled by sampling year were used to determine resistance mutations and subtypes, respectively. The prevalence of HIVDR amongst treatment-naïve individuals increased over time, reaching 14.4% in 2018. The increase was most prominent for non-nucleoside reverse transcriptase inhibitors (NNRTIs), reaching 12.7% in 2018. Subtype C was predominant in all regions, but a higher genetic variability (19% non-subtype C) was observed in the north region of Mozambique. These findings confirm a higher diversity of HIV in the north of the country and an increased prevalence of NNRTI resistance among treatment naïve individuals over time.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV Seropositivity , HIV-1 , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , Drug Resistance, Viral/genetics , HIV Infections/drug therapy , HIV Infections/epidemiology , HIV-1/genetics , Humans , Molecular Epidemiology , Mozambique/epidemiology , Mutation , Prevalence , Reverse Transcriptase Inhibitors/pharmacology
20.
J Infect Dis ; 226(8): 1412-1417, 2022 10 17.
Article in English | MEDLINE | ID: mdl-35921539

ABSTRACT

We evaluated the performance of nasal and nasopharyngeal Standard Q COVID-19 [coronavirus disease 2019] Ag tests (SD Biosensor) and the Panbio COVID-19 Ag Rapid Test Device (nasal; Abbott) against the Abbott RealTime severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) assay during the Omicron (clades 21M, 21K, and 21L) wave in South Africa. Overall, all evaluated tests performed well, with high sensitivity (range, 77.78%-81.42%) and excellent specificity values (>99%). The sensitivity of rapid antigen tests increased above 90% in samples with cycle threshold <20, and all 3 tests performed best within the first week after symptom onset.


Subject(s)
COVID-19 , SARS-CoV-2 , Antigens, Viral , COVID-19/diagnosis , COVID-19 Testing , Humans , Sensitivity and Specificity , South Africa
SELECTION OF CITATIONS
SEARCH DETAIL
...