Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(12): 7922-7930, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38498938

ABSTRACT

Chromoselective bond activation has been achieved in organic helicenium (nPr-DMQA+)-based photoredox catalysis. Consequently, control over chromoselective C(sp2)-X bond activation in multihalogenated aromatics has been demonstrated. nPr-DMQA+ can only initiate the halogen atom transfer (XAT) pathway under red light irradiation to activate low-energy-accessible C(sp2)-I bonds. In contrast, blue light irradiation initiates consecutive photoinduced electron transfer (conPET) to activate more challenging C(sp2)-Br bonds. Comparative reaction outcomes have been demonstrated in the α-arylation of cyclic ketones with red and blue lights. Furthermore, red-light-mediated selective C(sp2)-I bonds have been activated in iodobromoarenes to keep the bromo functional handle untouched. Finally, the strength of the chromoselective catalysis has been highlighted with two-fold functionalization using both photo-to-transition metal and photo-to-photocatalyzed transformations.

2.
Angew Chem Int Ed Engl ; 60(48): 25372-25380, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34510678

ABSTRACT

The nitrogen oxides NO2 , NO, and N2 O are among the most potent air pollutants of the 21st century. A bimetallic RhI -PtII complex containing an especially designed multidentate phosphine olefin ligand is capable of catalytically detoxifying these nitrogen oxides in the presence of hydrogen to form water and dinitrogen as benign products. The catalytic reactions were performed at room temperature and low pressures (3-4 bar for combined nitrogen oxides and hydrogen gases). A turnover number (TON) of 587 for the reduction of nitrous oxide (N2 O) to water and N2 was recorded, making these RhI -PtII complexes the best homogeneous catalysts for this reaction to date. Lower TONs were achieved in the conversion of nitric oxide (NO, TON=38) or nitrogen dioxide (NO2 , TON of 8). These unprecedented homogeneously catalyzed hydrogenation reactions of NOx were investigated by a combination of multinuclear NMR techniques and DFT calculations, which provide insight into a possible reaction mechanism. The hydrogenation of NO2 proceeds stepwise, to first give NO and H2 O, followed by the generation of N2 O and H2 O, which is then further converted to N2 and H2 O. The nitrogen-nitrogen bond-forming step takes place in the conversion from NO to N2 O and involves reductive dimerization of NO at a rhodium center to give a hyponitrite (N2 O2 2- ) complex, which was detected as an intermediate.

3.
J Org Chem ; 86(15): 10640-10653, 2021 08 06.
Article in English | MEDLINE | ID: mdl-34255497

ABSTRACT

A red-light-mediated nPr-DMQA+-catalyzed cascade intramolecular trifluoromethylation and dearomatization of indole derivatives with Umemoto's reagent has been developed. This protocol provides a facile and efficient approach for the construction of functionalized and potentially biologically important CF3-containing 3,3-spirocyclic indolines with moderate to high yields and excellent diastereoselectivities under mild conditions. The success of multiple gram-scale (1 and 10 g) experiments further highlights the robustness and practicality of this protocol and the merit of the employment of red light. Mechanistic studies support the formation of a crucial CF3 radical species and a dearomatized benzyl carbocation intermediate.


Subject(s)
Indoles , Light , Catalysis , Methylation
4.
Chem Sci ; 12(13): 4841-4849, 2021 Feb 08.
Article in English | MEDLINE | ID: mdl-34168760

ABSTRACT

We report the reactivity between the water stable Lewis acidic trioxatriangulenium ion (TOTA+) and a series of Lewis bases such as phosphines and N-heterocyclic carbene (NHC). The nature of the Lewis acid-base interaction was analyzed via variable temperature (VT) NMR spectroscopy, single-crystal X-ray diffraction, UV-visible spectroscopy, and DFT calculations. While small and strongly nucleophilic phosphines, such as PMe3, led to the formation of a Lewis acid-base adduct, frustrated Lewis pairs (FLPs) were observed for sterically hindered bases such as P( t Bu)3. The TOTA+-P( t Bu)3 FLP was characterized as an encounter complex, and found to promote the heterolytic cleavage of disulfide bonds, formaldehyde fixation, dehydrogenation of 1,4-cyclohexadiene, heterolytic cleavage of the C-Br bonds, and interception of Staudinger reaction intermediates. Moreover, TOTA+ and NHC were found to first undergo single-electron transfer (SET) to form [TOTA]·[NHC]˙+, which was confirmed via electron paramagnetic resonance (EPR) spectroscopy, and subsequently form a [TOTA-NHC]+ adduct or a mixture of products depending the reaction conditions used.

5.
J Am Chem Soc ; 142(28): 12056-12061, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32602713

ABSTRACT

Red light has the advantages of low energy, less health risks, and high penetration depth through various media. Herein, a helical carbenium ion (N,N'-di-n-propyl-1,13-dimethoxyquinacridinium (nPr-DMQA+) tetrafluoroborate) has been used as an organic photoredox catalyst for photoreductions and photooxidations in the presence of red light (λmax = 640 nm). It has catalyzed red-light-mediated dual transition-metal/photo-redox-catalyzed C-H arylation and intermolecular atom-transfer radical addition through oxidative quenching. Moreover, its potential in photooxidation catalysis has also been demonstrated by successful applications in red-light-induced aerobic oxidative hydroxylation of arylboronic acids and benzylic C(sp3)-H oxygenation through reductive quenching. Thus, a versatile organic photoredox catalyst (helical carbenium ion) for red-light-mediated photoredox reactions has been developed.

6.
Dalton Trans ; 49(45): 16095-16105, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-32186563

ABSTRACT

The synthesis of novel redox active ambiphilic ligands L1-L3 and their coordination chemistry to first-row late transition metal halides (M = Co and Ni) is reported. The heterocyclic carbocation scaffolds act as Lewis acid moieties while the pyridine anchor acts as the coordinating Lewis base. The high synthetic tunability of this ligand scaffold allows for control of its rigidity and electronic properties. Anion exchange and coordination of a chloride anion to the metal center was observed resulting in the formation of [MCl3]- metallate. Upon coordination to the pyridine anchor, the metallate centers adopt a canonical tetrahedral geometry, resulting in an overall neutral complex best described as a zwitterionic metallate trichloride bound to a cationic ligand. Characterization techniques including single crystal X-ray diffraction, cyclic voltammetry, and UV-Vis absorption spectroscopy were employed to better understand the structural and chemical properties of the ligands and metal complexes. A possible weak interaction between one of the chlorides and the carbenium moiety in the ligand is observed in crystals of both of the Co(ii) and Ni(ii) complexes with ligand L1. Density functional theory (DFT) calculations support that this electrostatic interaction for complexes 2a and 2b exists only in the solid state.

7.
Chem Sci ; 11(40): 11060-11067, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-34123196

ABSTRACT

Persistent organic radicals have gained considerable attention in the fields of catalysis and materials science. In particular, helical molecules are of great interest for the development and application of novel organic radicals in optoelectronic and spintronic materials. Here we report the syntheses of easily tunable and stable neutral quinolinoacridine radicals under anaerobic conditions by chemical reduction of their quinolinoacridinium cation analogs. The structures of these [4]helicene radicals were determined by X-ray crystallography. Density functional theory (DFT) calculations, supported by electron paramagnetic resonance (EPR) measurements, indicate that over 40% of spin density is located at the central carbon of our [4]helicene radicals regardless of their structural modifications. The localization of the charge promotes a reversible oxidation to the cation upon exposure to air. This unusual reactivity toward molecular oxygen was monitored via UV-Vis spectroscopy.

8.
Chem Sci ; 10(34): 7937-7945, 2019 Sep 14.
Article in English | MEDLINE | ID: mdl-31673319

ABSTRACT

Supporting two metal binding sites by a tailored polydentate trop-based (trop = 5H-dibenzo[a,d]cyclohepten-5-yl) ligand yields highly unsymmetric homobimetallic rhodium(i) complexes. Their reaction with hydrogen rapidly forms Rh hydrides that undergo an intramolecular semihydrogenation of two C[triple bond, length as m-dash]C bonds of the trop ligand. This reaction is chemoselective and converts C[triple bond, length as m-dash]C bonds to a bridging carbene and an olefinic ligand in the first and the second semihydrogenation steps, respectively. Stabilization by a bridging diphosphine ligand allows characterization of a Rh hydride species by advanced NMR techniques and may provide insight into possible elementary steps of H2 activation by interfacial sites of heterogeneous Rh/C catalysts.

9.
Front Chem ; 7: 365, 2019.
Article in English | MEDLINE | ID: mdl-31214563

ABSTRACT

Transition metal-stabilized carbocations are characterized by synthetically valuable interactions, yet, to date there are no comprehensive reports of the many bonding modes that can exist between a metal and carbocation. This review summarizes developments in these complexes to provide a clear picture of their properties and reactivities. In order to strategically exploit them, we propose this summary of the different bonding modes for transition metal-carbocation complexes. These models will help chemists understand the orbital interactions involved in these compounds so that they can approach their synthetic goals most effectively. Multiple transition metals and carbocations will be discussed.

10.
Chem Sci ; 10(4): 1117-1125, 2019 Jan 28.
Article in English | MEDLINE | ID: mdl-30774909

ABSTRACT

The dinuclear ruthenium complex [Ru2H(µ-H)(Me2dad)(dbcot)2] contains a 1,4-dimethyl-diazabuta-1,3-diene (Me2dad) as a non-innocent bridging ligand between the metal centers to give a [Ru2(Me2dad)] core. In addition, each ruthenium is bound to one dibenzo[a,e]cyclooctatetraene (dbcot) ligand. This Ru dimer converts H2 to protons and electrons. It also catalyzes reversibly under mild conditions the selective hydrogenation of vitamins K2 and K3 to their corresponding hydroquinone equivalents without affecting the C[double bond, length as m-dash]C double bonds. Mechanistic studies suggest that the [Ru2(Me2dad)] moiety, like hydrogenases, reacts with H2 and releases electrons and protons stepwise.

11.
Angew Chem Int Ed Engl ; 55(49): 15323-15328, 2016 12 05.
Article in English | MEDLINE | ID: mdl-27860082

ABSTRACT

The synthesis and characterization of several zero-valent cobalt complexes with a bis(olefin)-amino ligand is presented. Some of these complexes proved to be efficient catalysts for the selective oxidation of secondary and allylic phosphanes, as well as diphosphanes, even with a direct P-P bond. With 5 mol % catalyst loadings the oxidations proceed under mild conditions (25-70 °C, 7-22 h, 2 bar N2 O) and afford good to excellent yields (65-98 %). In this process, the greenhouse gas N2 O is catalytically converted into benign N2 and added-value organophosphorus compounds, some of which are difficult to obtain otherwise.

12.
Angew Chem Int Ed Engl ; 55(39): 11999-2002, 2016 09 19.
Article in English | MEDLINE | ID: mdl-27557780

ABSTRACT

We report the synthesis of a series of ruthenium complexes supported by the phosphine olefin ligand tropPPh2 (trop=5-H-dibenzo-[a,d]cyclohepten-5-yl) in the oxidation states 0, +I, and +II, formed via successive one-electron oxidization steps from Ru(0) (tropPPh2 )2 . The bidentate character of the tropPPh2 ligand and its steric hindrance force the complexes to adopt uncommon geometries, which were investigated by X-ray diffraction analysis. EPR data of the mononuclear Ru(I) complex reveal couplings of the unpaired spin with the ruthenium and two phosphorus nuclei, as well as the olefinic protons which show that the spin is mainly localized on the Ru(I) center.

13.
Dalton Trans ; 45(37): 14581-90, 2016 Oct 07.
Article in English | MEDLINE | ID: mdl-27334096

ABSTRACT

Activation of sulfur containing heteroallenes by nickel(ii) alkyl complexes supported by the bulky hydrotris(3-phenyl-5-methylpyrazolyl)borate (Tp(Ph,Me)) ligand is described. Exposure of Tp(Ph,Me)NiCH2Ph (1a) and Tp(Ph,Me)NiCH2Si(CH3)3 (1b) to CS2 resulted in formation of the insertion products Tp(Ph,Me)Ni(η(2)-CS2)CH2Ph (2a) and Tp(Ph,Me)Ni(η(2)-CS2)CH2Si(CH3)3 (2b) in moderate yields. Reaction of 1a and MeNCS produced two species in a 1 : 1 ratio, identified as Tp(Ph,Me)Ni(η(2)-MeNC)CH2Ph (3) and Tp(Ph,Me)Ni(η(2)-MeNCS)SCH2Ph (4). Isolation of the unexpected insertion product (3) prompted an investigation into the activity of 1a-b in the presence of isocyanides (i.e.(t)BuNC), which resulted in isolation of Tp(Ph,Me)Ni(η(2-t)BuNC)CH2Ph (5a) and Tp(Ph,Me)Ni(η(2-t)BuNC)CH2Si(CH3)3 (5b). Similarly, reaction of 1a with OCS led to the isolation of a rare example of a Ni(i) carbonyl species Tp(Ph,Me)NiCO (6). Alternatively, complex 6 was also formed by exposure of 1a-b to an atmosphere of CO. Isolation of the intermediate species (Tp(Ph,Me)Ni(η(2)-CO)CH2TMS (7b) and Tp(Ph,Me)Ni(CO)(C(O)R, (8a-b) with R = Ph, TMS)) shed light on the formation of such species.

14.
Angew Chem Int Ed Engl ; 55(5): 1854-8, 2016 Jan 26.
Article in English | MEDLINE | ID: mdl-26693955

ABSTRACT

The oxidation of alcohols with N2O as the hydrogen acceptor was achieved with low catalyst loadings of a rhodium complex that features a cooperative bis(olefin)amido ligand under mild conditions. Two different methods enable the formation of either the corresponding carboxylic acid or the ester. N2 and water are the only by-products. Mechanistic studies supported by DFT calculations suggest that the oxygen atom of N2O is transferred to the metal center by insertion into the Rh-H bond of a rhodium amino hydride species, generating a rhodium hydroxy complex as a key intermediate.

15.
Dalton Trans ; 44(46): 20056-66, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-26525295

ABSTRACT

A diolefin ether, trop2O (2), and a diolefin thioether, trop2S (3), have been investigated as ligand analogues of the well-established diolefin amine, trop2NH (1). Compounds 2 and 3 form different conformers in solution and in the solid state. Whereas 2 could be coordinated to Ni(0), 3 was found to be more suited for coordination to Rh(I). The coordination chemistry, electrochemical properties, and ligand exchange phenomena of the resulting complexes, [Ni(trop2O)(PPh3)] (5) and [Rh(trop2S)(L)n][OTf] (6: L = NCMe, n = 2; 7: L = 2,2'-bipy, n = 1) were investigated by analytical techniques including NMR spectroscopy, single crystal X-ray analysis, and cyclic voltammetry. The results were compared with those obtained for the amine analogues of 5, 6, and 7.

16.
Dalton Trans ; 44(45): 19494-500, 2015 Dec 07.
Article in English | MEDLINE | ID: mdl-26216334

ABSTRACT

Insertion chemistry of isocyanide molecules was used to functionalize C-F sp(2) bonds after their oxidative addition across the metal center in a ß-diketiminate niobium(iii) imido complex (BDI)Nb(N(t)Bu)(C6H6). The complexes formed, 3a-b ([BDI]Nb(PhC[double bond, length as m-dash]N)(N(t)Bu)(F) (R = 1,6-diisopropylphenyl, tert-butyl), were characterized by NMR spectroscopy and X-ray analysis. Further treatment with phenylsilane induced H/F exchange under mild conditions, which was followed by hydride transfer to the inserted isocyanide. Divergent reactivity was observed when the two analogous aryl and tert-butyl isocyanide insertion products were treated with phenylsilane.

17.
Chem Sci ; 6(2): 993-1003, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-29560186

ABSTRACT

Reaction of the neutral diniobium benzene complex {[Nb(BDI)N t Bu]2(µ-C6H6)} (BDI = N,N'-diisopropylbenzene-ß-diketiminate) with Ag[B(C6F5)4] results in a single electron oxidation to produce a cationic diniobium arene complex, {[Nb(BDI)N t Bu]2(µ-C6H6)}{B(C6F5)4}. Investigation of the solid state and solution phase structure using single-crystal X-ray diffraction, cyclic voltammetry, magnetic susceptibility, and multinuclear NMR spectroscopy indicates that the oxidation results in an asymmetric molecule with two chemically inequivalent Nb atoms. Further characterization using density functional theory (DFT) calculations, UV-visible, Nb L3,2-edge X-ray absorption near-edge structure (XANES), and EPR spectroscopies supports assignment of a diniobium complex, in which one Nb atom carries a single unpaired electron that is not largely delocalized on the second Nb atom. During the oxidative transformation, one electron is removed from the δ-bonding HOMO, which causes a destabilization of the molecule and formation of an asymmetric product. Subsequent reactivity studies indicate that the oxidized product allows access to metal-based chemistry with substrates that did not exhibit reactivity with the starting neutral complex.

18.
Nat Chem ; 6(6): 554, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24848244
19.
J Am Chem Soc ; 136(8): 2994-7, 2014 Feb 26.
Article in English | MEDLINE | ID: mdl-24524190

ABSTRACT

We describe the unusual reactivity of a highly labile diethyl ether adduct of an asymmetric niobium(V) bis(imide) 2.OEt2 containing the monoazabutadiene (MAD) ligand. This species undergoes clean nitrene transfer on treatment with tert-butyl- or di-isopropylphenyl azide resulting in the unprecedented reformation of nacnac ligands bound to the metal center. Corresponding reactions with trimethylsilyl- or tert-butyl azide allowed the isolation of two rare intermediates prior to N2 loss; mechanistic studies support the involvement of two different niobium species.

20.
Dalton Trans ; 42(29): 10525-32, 2013 Aug 07.
Article in English | MEDLINE | ID: mdl-23748480

ABSTRACT

The synthesis of several nickel(II) and manganese(II) alkyl complexes supported by hydrotris(3-phenyl-5-methylpyrazolyl)borate (Tp(Ph,Me)) ligand is reported. The metal halide complexes Tp(Ph,Me)MnCl(CH3CN) (1) and Tp(Ph,Me)NiCl (4) were used as precursors for synthesis of Tp(Ph,Me)MnCH2Si(Me)3 (2), Tp(Ph,Me)MnCH2Ph (3), Tp(Ph,Me)NiCH2Si(Me)3 (5) and Tp(Ph,Me)NiCH2Ph (6). The resulting Mn(II) and Ni(II) alkyl complexes, 2-3 and 5-6, were characterized by X-ray crystallography, NMR spectroscopy, and FT-IR spectroscopy. X-ray crystallographic analysis revealed distorted tetrahedral geometries for complexes 2-3 and 5 with a κ(3)-Tp(Ph,Me). Complex 6, on the other hand, was found to have a distorted square planar geometry with κ(2)-Tp(Ph,Me) and an η(3)-benzyl ligand. Transformations of 4 and Tp(Ph,Me)CoCl (10) via treatment with NaN3 to yield Tp(Ph,Me)NiN3 (11), Tp(Ph,Me)CoN3 (12), along with the synthesis of (Tp(Ph,Me))2Ni (8) and Tp(Ph,Me)NiCl(3-Ph-5MepzH) (9) are also reported.

SELECTION OF CITATIONS
SEARCH DETAIL
...