Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Theor Appl Genet ; 127(5): 1073-90, 2014 May.
Article in English | MEDLINE | ID: mdl-24567047

ABSTRACT

KEY MESSAGE: Proof of concept of Bayesian integrated QTL analyses across pedigree-related families from breeding programs of an outbreeding species. Results include QTL confidence intervals, individuals' genotype probabilities and genomic breeding values. Bayesian QTL linkage mapping approaches offer the flexibility to study multiple full sib families with known pedigrees simultaneously. Such a joint analysis increases the probability of detecting these quantitative trait loci (QTL) and provide insight of the magnitude of QTL across different genetic backgrounds. Here, we present an improved Bayesian multi-QTL pedigree-based approach on an outcrossing species using progenies with different (complex) genetic relationships. Different modeling assumptions were studied in the QTL analyses, i.e., the a priori expected number of QTL varied and polygenic effects were considered. The inferences include number of QTL, additive QTL effect sizes and supporting credible intervals, posterior probabilities of QTL genotypes for all individuals in the dataset, and QTL-based as well as genome-wide breeding values. All these features have been implemented in the FlexQTL(™) software. We analyzed fruit firmness in a large apple dataset that comprised 1,347 individuals forming 27 full sib families and their known ancestral pedigrees, with genotypes for 87 SSR markers on 17 chromosomes. We report strong or positive evidence for 14 QTL for fruit firmness on eight chromosomes, validating our approach as several of these QTL were reported previously, though dispersed over a series of studies based on single mapping populations. Interpretation of linked QTL was possible via individuals' QTL genotypes. The correlation between the genomic breeding values and phenotypes was on average 90 %, but varied with the number of detected QTL in a family. The detailed posterior knowledge on QTL of potential parents is critical for the efficiency of marker-assisted breeding.


Subject(s)
Crosses, Genetic , Malus/genetics , Quantitative Trait Loci , Bayes Theorem , Breeding , Chromosome Mapping , Chromosomes, Plant , Fruit/anatomy & histology , Fruit/genetics , Genetic Association Studies , Genetic Linkage , Genotype , Malus/anatomy & histology , Pedigree
2.
Genome ; 51(8): 657-67, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18650955

ABSTRACT

Scab, caused by the fungal pathogen Venturia inaequalis, is the most common disease of cultivated apple (Malus xdomestica). The fungal races 6 and 7 have now overcome the major resistance gene Vf, which is widely used in apple breeding programmes. New breeding strategies to achieve durable resistance are thus necessary. The aim of this study was to determine the genetic basis of quantitative resistance of the apple cultivar 'Dülmener Rosenapfel', known to be scab resistant under different environmental conditions. An F1 progeny derived from the cross between the susceptible cultivar 'Gala' and 'Dülmener Rosenapfel' was tested in a greenhouse with a multi-isolate inoculum of V. inaequalis. Rvi14, a new major gene that conditions a chlorotic-type reaction, was mapped on linkage group (LG) 6 in a genomic region not known to be involved in disease resistance. A further three quantitative trait loci (QTL) for resistance were identified. One co-localized with Rvi14 on LG6, whereas the remaining two were detected on LG11 and LG17, in genomic regions already reported to carry broad-spectrum QTL in other genetic backgrounds. Since a selective genotyping approach was used to detect QTL, an expectation-maximization (EM) computation was used to estimate the corrected QTL contributions to phenotypic variation and was validated by entire progeny genotyping.


Subject(s)
Ascomycota , Genes, Plant , Immunity, Innate/genetics , Malus/genetics , Malus/microbiology , Quantitative Trait Loci , Crosses, Genetic , Genome, Plant
3.
Theor Appl Genet ; 109(8): 1702-9, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15365630

ABSTRACT

Breeding for scab-resistant apple cultivars by pyramiding several resistance genes in the same genetic background is a promising way to control apple scab caused by the fungus Venturia inaequalis. To achieve this goal, DNA markers linked to the genes of interest are required in order to select seedlings with the desired resistance allele combinations. For several apple scab resistance genes, molecular markers are already available; but until now, none existed for the apple scab resistance gene Vbj originating from the crab apple Malus baccata jackii. Using bulk segregant analysis, three RAPD markers linked to Vbj were first identified. These markers were transformed into more reliable sequence-characterised amplified region (SCAR) markers that proved to be co-dominant. In addition, three SSR markers and one SCAR were identified by comparing homologous linkage groups of existing genetic maps. Discarding plants showing genotype-phenotype incongruence (GPI plants) plants, a linkage map was calculated. Vbj mapped between the markers CH05e03 (SSR) and T6-SCAR, at 0.6 cM from CH05e03 and at 3.9 cM from T6-SCAR. Without the removal of the GPI plants, Vbj was placed 15 cM away from the closest markers. Problems and pitfalls due to GPI plants and the consequences for mapping the resistance gene accurately are discussed. Finally, the usefulness of co-dominant markers for pedigree analysis is also demonstrated.


Subject(s)
Ascomycota , Genetic Markers/genetics , Immunity, Innate/genetics , Malus/genetics , Plant Diseases/microbiology , Chromosome Mapping , DNA Primers , Genes, Plant/genetics , Plant Diseases/genetics , Random Amplified Polymorphic DNA Technique
4.
Theor Appl Genet ; 106(8): 1497-508, 2003 May.
Article in English | MEDLINE | ID: mdl-12677403

ABSTRACT

The availability of a high quality linkage map is essential for the detection and the analysis of quantitative traits. Such a map should cover a significant part of the genome, should be densely populated with markers, and in order to gain the maximum advantage should be transferable to populations or cultivars other than the ones on which it has been constructed. An apple genetic linkage map has been constructed on the basis of a segregating population of the cross between the cultivars Fiesta and Discovery. A total of 840 molecular markers, 475 AFLPs, 235 RAPDs, 129 SSRs and 1 SCAR, were used for the two parental maps constructed with JoinMap and spanning 1,140 cM and 1,450 cM, respectively. Large numbers of codominant markers, like SSRs, enable a rapid transfer of the map to other populations or cultivars, allowing the investigation of any chosen trait in another genetic background. This map is currently the most advanced linkage map in apple with regard to genome coverage and marker density. It represents an ideal starting point for future mapping projects in Malus since the stable and transferable SSR frame of the map can be saturated quickly with dominant AFLP markers.


Subject(s)
Chromosome Mapping , Fruit/genetics , Genome, Plant , Automation , Genetic Linkage , Genetic Markers
5.
Mol Plant Microbe Interact ; 14(4): 508-15, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11310738

ABSTRACT

Scab caused by the fungal pathogen Venturia inaequalis is the most common disease of cultivated apple (Malus x domestica Borkh.). Monogenic resistance against scab is found in some small-fruited wild Malus species and has been used in apple breeding for scab resistance. Vf resistance of Malus floribunda 821 is the most widely used scab resistance source. Because breeding a high-quality cultivar in perennial fruit trees takes dozens of years, cloning disease resistance genes and using them in the transformation of high-quality apple varieties would be advantageous. We report the identification of a cluster of receptor-like genes with homology to the Cladosporium fulvum (Cf) resistance gene family of tomato on bacterial artificial chromosome clones derived from the Vf scab resistance locus. Three members of the cluster were sequenced completely. Similar to the Cf gene family of tomato, the deduced amino acid sequences coded by these genes contain an extracellular leucine-rich repeat domain and a transmembrane domain. The transcription of three members of the cluster was determined by reverse transcriptionpolymerase chain reaction to be constitutive, and the transcription and translation start of one member was verified by 5' rapid amplification of cDNA ends. We discuss the parallels between Cf resistance of tomato and Vf resistance of apple and the possibility that one of the members of the gene cluster is the Vf gene. Cf homologs from other regions of the apple genome also were identified and are likely to present other scab resistance genes.


Subject(s)
Cladosporium/genetics , Multigene Family , Rosales/genetics , Amino Acid Sequence , Base Sequence , DNA Primers , Solanum lycopersicum/genetics , Solanum lycopersicum/microbiology , Molecular Sequence Data , Plant Proteins/chemistry , Plant Proteins/genetics , Protein Biosynthesis , Rosales/microbiology , Sequence Homology, Amino Acid , Transcription, Genetic
6.
Int J Psychophysiol ; 35(2-3): 189-96, 2000 Mar.
Article in English | MEDLINE | ID: mdl-10677647

ABSTRACT

An extensive series of studies, beginning with the pioneering experiments of Wiesel and Hubel, have shown that correct visual experience is crucial for the development of the visual system. Several years ago, we put forward the hypothesis that neurotrophic factors of the neurotrophin family (NGF, BDNF, NT-3, NT-4) have a role in mediating the effects of visual experience in the developing visual system. This theory is based on the following experimental results: (a) exogenous supply of neurotrophins during the critical period prevents the effects of monocular deprivation; and (b) transplant of cells releasing NGF allows a normal development of the functional properties of visual cortical neurons in dark-reared rats.


Subject(s)
Darkness , Nerve Growth Factors/physiology , Neuronal Plasticity/physiology , Vision, Ocular/physiology , Animals
7.
Vision Res ; 39(3): 569-74, 1999 Feb.
Article in English | MEDLINE | ID: mdl-10341985

ABSTRACT

Since the advent of gene manipulating techniques, it has become increasingly important to study the neural functional properties of the mouse. The bcl2 gene has a powerful inhibitory action on naturally occurring cell death. As a consequence the brain of bcl2 overexpressing mouse is 1.5 times bigger than the brain of a wild type animal and the retina has more than twice the ganglion cells than normal (Martinou, Dubois-Dauphin, Staple, Rodriguez, Frankowski, Missotten, Albertini, Talabot, Catsicas, Pietra, & Huarte (1994). Neuron, 13: 1017-1030). Since in most mammals the upper limit of behavioural visual acuity is imposed by ganglion cells density, the visual acuity should be higher in bcl2 mice than in wild type mice. We measured behavioural visual acuity in wild type and transgenic mice and, contrary to the expectation, we found it to be of the same order (0.5-0.6 c/deg) in the two groups of animals, indicating that an increase in ganglion cells density is not effective in improving visual resolution.


Subject(s)
Genes, bcl-2/genetics , Visual Acuity/physiology , Animals , Behavior, Animal , Female , Male , Maze Learning , Mice , Mice, Transgenic , Rats , Visual Acuity/genetics
8.
Mol Gen Genet ; 262(4-5): 884-91, 1999 Dec.
Article in English | MEDLINE | ID: mdl-10628874

ABSTRACT

A positional cloning project was started in apple with the aim of isolating the Vf resistance gene of Malus floribunda 821. Vf confers resistance against apple scab, the most important disease in apple orchards. A chromosome walk starting from two molecular markers (M18-CAPS and AM19-SCAR) flanking Vf was performed, using a bacterial artificial chromosome (BAC) library containing inserts of the cultivar Florina, which is heterozygous for Vf. Thirteen BAC clones spanning the region between the two markers were identified in nine chromosome walking steps. The size of the resulting contig is approximately 550 kb. In order to map the Vf region in more detail, we analyzed over 2000 plants from different populations segregating for Vf with markers produced from BAC end sequences. In this way, we were able to restrict the possible location of the Vf gene to a minimum of five clones spanning an interval of approximately 350 kb.


Subject(s)
Chromosomes, Bacterial , Contig Mapping , Fruit/genetics , Base Sequence , Chromosome Walking , DNA Primers
10.
Chemotherapy ; 42(3): 206-9, 1996.
Article in English | MEDLINE | ID: mdl-8983888

ABSTRACT

The activity of serum and its synergistic effect with many antibiotics against bacteria are well known. Few reports are available on similar phenomena produced by human amniotic fluid (HAF). Thus we investigated the antibacterial activity of HAF and the presence of a synergistic effect with gentamicin (GM) against Escherichia coli strains. Antimicrobial activity was evaluated as a delay of the growth curve, using a turbidimetric method. E. coli ATCC 10798 and E. coli SC 12155 were employed as test micro-organisms in nutrient broth, and GM was used at a subinhibitory concentration. HAF exerted antibacterial activity and, cooperating with GM at subinhibitory concentration, enhanced its antibiotic activity against E. coli. The presence of Schlievert's glycoprotein in HAF could explain these results.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Gentamicins/pharmacology , Amniotic Fluid , Escherichia coli/growth & development , Humans
11.
Theor Appl Genet ; 93(1-2): 199-204, 1996 Jul.
Article in English | MEDLINE | ID: mdl-24162218

ABSTRACT

Large-scale marker-assisted selection requires highly reproducible, consistent and simple markers. The use of genetic markers is important in woody plant breeding in general, and in apple in particular, because of the high level of heterozygosity present in Malus species. We present here the transformation of two RAPD markers, which we found previously to be linked to the major scab resistance gene Vf, into more reliable and reproducible markers that can be applied directly to apple breeding. We give an example of how the use of such markers can speed up selection for the introduction of scab resistance genes into the same plant, reducing labour and avoiding time-consuming test crosses. We discuss the nature and relationship of the scab resistance gene Vf to the one present in Nova Easygro, thought to be Vr.

12.
Plant Mol Biol ; 26(2): 597-602, 1994 Oct.
Article in English | MEDLINE | ID: mdl-7948915

ABSTRACT

Breeding resistant apple plants is an alternative way to control fungal pathogens reducing the environmental impact due to the use of pesticides. The breeding of apple cultivars resistant to Venturia inaequalis could be much improved by marker-assisted selection. A molecular marker closely linked to the resistance locus called Vf could replace selection based on infection studies. To find such molecular markers, DNA of progenies from crossings of a resistant and a susceptible apple tree was subject to bulked segregant analysis. Two markers were found with a genetic distance of 10.6% and 19.7% recombination frequency to the Vf locus.


Subject(s)
DNA, Plant/genetics , Fruit/genetics , DNA Primers , Fruit/microbiology , Immunity, Innate/genetics , Polymerase Chain Reaction/methods , Species Specificity , Xylariales/pathogenicity
13.
Mol Gen Genet ; 241(1-2): 11-6, 1993 Oct.
Article in English | MEDLINE | ID: mdl-7901750

ABSTRACT

The basic prerequisite for an efficient breeding program to improve levels of resistance to pathogens in plants is the identification of genes controlling the resistance character. If the response to pathogens is under the control of a multilocus system, the utilization of molecular markers becomes essential. Stalk and ear rot caused by Gibberella zeae is a widespread disease of corn: resistance to G. zeae is quantitatively inherited. Our experimental approach to understanding the genetic basis of resistance to Gibberella is to estimate the genetic linkage between available molecular markers and the character, measured as the amount of diseased tissue 40 days after inoculation of a suspension of Fusarium graminearum, the conidial form of G. zeae, into the first stalk internode. Sensitive and resistant parental inbreds were crossed to obtain F1 and F2 populations: the analysis of the segregation of 95 RFLP (restriction fragment length polymorphism) clones and 10 RAPD (random amplified polymorphic DNA) markers was performed on a population of 150 F2 individuals. Analysis of resistance was performed on the F3 families obtained by selfing the F2 plants. Quantitative trait loci (QTL) detection was based either on analysis of regression coefficients between family mean value and allele values in the F2 population, or by means of interval mapping, using MAPMAKER-QTL. A linkage map of maize was obtained, in which four to five genomic regions are shown to carry factors involved in the resistance to G. zeae.


Subject(s)
Genes, Plant , Gibberella/immunology , Plant Diseases/microbiology , Zea mays/genetics , Chromosome Mapping , Fusarium/immunology , Genetic Linkage , Genetic Markers , Gibberella/pathogenicity , Polymorphism, Restriction Fragment Length , Zea mays/immunology , Zea mays/microbiology
14.
Theor Appl Genet ; 84(1-2): 10-6, 1992 Jun.
Article in English | MEDLINE | ID: mdl-24203022

ABSTRACT

Densely saturated genetic maps of neutral genetic markers are a prerequisite either for plant breeding programs to improve quantitative traits in crops or for evolutionary studies. cDNA and genomic clones from maize were utilized to initiate the construction of a RFLP linkage map in Sorghum bicolor. To this purpose, an F2 population was produced from starting parental lines IS 18729 (USA) and IS 24756 (Nigeria) that were differentiated with regard to many morphological and agronomical traits. A total of 159 maize clones were hybridized to the genomic DNA of the two parents in order to detect polymorphism: 154 probes hybridized to sorghum and 58 out of these were polymorphic. In almost all of the cases hybridization patterns were similar between maize and sorghum. The analysis of the segregation of 35 polymorphic clones in an F2 population of 149 individuals yielded five linkage groups. The three principal ones recall regions of maize chromosomes 1, 3 and 5: in general, colinearity was maintained. A possible inversion, involving a long region of maize chromosome 3, was detected. Simulations were also performed to empirically obtain a value for the lowest number of individuals of the F2 population needed to obtain the same linkage data.

SELECTION OF CITATIONS
SEARCH DETAIL
...