Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomimetics (Basel) ; 9(3)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38534846

ABSTRACT

This paper proposes an autonomous robotic system to prune sweet pepper leaves using semantic segmentation with deep learning and an articulated manipulator. This system involves three main tasks: the perception of crop parts, the detection of pruning position, and the control of the articulated manipulator. A semantic segmentation neural network is employed to recognize the different parts of the sweet pepper plant, which is then used to create 3D point clouds for detecting the pruning position and the manipulator pose. Eventually, a manipulator robot is controlled to prune the crop part. This article provides a detailed description of the three tasks involved in building the sweet pepper pruning system and how to integrate them. In the experiments, we used a robot arm to manipulate the pruning leaf actions within a certain height range and a depth camera to obtain 3D point clouds. The control program was developed in different modules using various programming languages running on the ROS (Robot Operating System).

2.
Sensors (Basel) ; 23(8)2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37112381

ABSTRACT

Automation in agriculture can save labor and raise productivity. Our research aims to have robots prune sweet pepper plants automatically in smart farms. In previous research, we studied detecting plant parts by a semantic segmentation neural network. Additionally, in this research, we detect the pruning points of leaves in 3D space by using 3D point clouds. Robot arms can move to these positions and cut the leaves. We proposed a method to create 3D point clouds of sweet peppers by applying semantic segmentation neural networks, the ICP algorithm, and ORB-SLAM3, a visual SLAM application with a LiDAR camera. This 3D point cloud consists of plant parts that have been recognized by the neural network. We also present a method to detect the leaf pruning points in 2D images and 3D space by using 3D point clouds. Furthermore, the PCL library was used to visualize the 3D point clouds and the pruning points. Many experiments are conducted to show the method's stability and correctness.


Subject(s)
Capsicum , Semantics , Neural Networks, Computer , Algorithms , Agriculture
3.
Sensors (Basel) ; 22(14)2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35890823

ABSTRACT

Tomato sucker or axillary shoots should be removed to increase the yield and reduce the disease on tomato plants. It is an essential step in the tomato plant care process. It is usually performed manually by farmers. An automated approach can save a lot of time and labor. In the literature review, we see that semantic segmentation is a process of recognizing or classifying each pixel in an image, and it can help machines recognize and localize tomato suckers. This paper proposes a semantic segmentation neural network that can detect tomato suckers quickly by the tomato plant images. We choose RGB-D images which capture not only the visual of objects but also the distance information from objects to the camera. We make a tomato RGB-D image dataset for training and evaluating the proposed neural network. The proposed semantic segmentation neural network can run in real-time at 138.2 frames per second. Its number of parameters is 680, 760, much smaller than other semantic segmentation neural networks. It can correctly detect suckers at 80.2%. It requires low system resources and is suitable for the tomato dataset. We compare it to other popular non-real-time and real-time networks on the accuracy, time of execution, and sucker detection to prove its better performance.


Subject(s)
Solanum lycopersicum , Image Processing, Computer-Assisted/methods , Neural Networks, Computer , Semantics
SELECTION OF CITATIONS
SEARCH DETAIL
...