Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacogenomics J ; 15(1): 49-54, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25048417

ABSTRACT

Identification of the genetic defect underlying early-onset diabetes is important for determining the specific diabetes subtype, which would then permit appropriate treatment and accurate assessment of recurrence risk in offspring. Given the extensive genetic and clinical heterogeneity of the disease, high-throughput sequencing might provide additional diagnostic potential when Sanger sequencing is ineffective. Our aim was to develop a targeted next-generation assay able to detect mutations in several genes involved in glucose metabolism. All 13 known MODY genes, genes identified from a genome-wide linkage study or genome-wide association studies as increasing the risk of type 2 diabetes and genes causing diabetes in animal models, were included in the custom panel. We selected a total of 102 genes by performing a targeting re-sequencing in 30 patients negative for mutations in the GCK, HNF1α, HNF4α, HNF1ß and IPF1 genes at the Sanger sequencing analysis. Previously unidentified variants in the RFX6 gene were found in three patients and in two of them we also detected rare variants in WFS1 and ABCC8 genes. All patients showed a good therapeutic response to dipeptidyl peptidase-4 (DPP4) inhibitors. Our study reveals that next-generation sequencing provides a highly sensitive method for identification of variants in new causative genes of diabetes. This approach may help in understanding the molecular etiology of diabetes and in providing more personalized treatment for each genetic subtype.


Subject(s)
DNA-Binding Proteins/genetics , Diabetes Mellitus/diagnosis , Diabetes Mellitus/genetics , Genetic Association Studies/methods , Mutation/genetics , Transcription Factors/genetics , Adolescent , Adult , Child , Child, Preschool , Diabetes Mellitus/drug therapy , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Female , Humans , Infant , Male , Pedigree , Regulatory Factor X Transcription Factors , Young Adult
2.
Acta Diabetol ; 48(4): 283-290, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21312045

ABSTRACT

This study aims to examine the effect of pioglitazone on potential progression of autonomic damage in addition to changes in control of cardiovascular function in patients with type 2 diabetes (T2DM). Thirty patients with T2DM and 32 healthy subjects participated in the study. Sympathovagal activity, assessed by power spectral analysis (PSA) of R-R intervals variability, and blood pressure (BP) were studied during clinostatism and orthostatism in controls and patients. We have assessed blood pressure control by 24-hour monitoring of ambulatory blood pressure. Patients were treated with pioglitazone (30 mg/day) for 6 months, and then re-evaluated by PSA for heart rate variability (HRV). Reduced levels of HbA1c (P < 0.0001) and urinary albumin (P = 0.008) were observed in pioglitazone-treated patients compared to untreated baseline levels. Arterial BP remained unchanged following pioglitazone treatment. T2DM patients had reduced HRV (low-frequency power; LF; P < 0.0001 and LF/HF; LF/HF; P < 0.0001) at baseline (clinostatism) compared to controls. Baseline clinostatic differences between groups persisted after pioglitazone treatment and no effect of treatment on basal HRV variables was observed. In controls, HF decreased and LF and LF/HF ratio increased in the orthostatic position. A similar effect for HF was observed in patients, but LF and LF/HF did not increase. The normal difference between HF-power in clinostatism versus orthostatism observed for controls (P < 0.0001) was restored in patients following pioglitazone treatment (P = 0.028). A significant decrease from lying to standing position in orthostatic LF-power (P < 0.0001) and LF/HF (P < 0.0001) was also observed between patients and controls. Although no differences in autonomic control of HRV were observed between controls and patients with T2DM, significant differences were observed in sympathovagal balance following either clinostatic or orthostatic challenge. These findings provide initial evidence of a potential additional benefit afforded by pioglitazone for the improvement of cardiac sympathovagal balance in T2DM.


Subject(s)
Blood Pressure/drug effects , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/physiopathology , Heart Rate/drug effects , Heart/physiopathology , Thiazolidinediones/therapeutic use , Adult , Aged , Case-Control Studies , Diabetes Mellitus, Type 2/metabolism , Female , Heart/drug effects , Humans , Male , Middle Aged , Pioglitazone , Posture
SELECTION OF CITATIONS
SEARCH DETAIL
...