Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
iScience ; 27(5): 109777, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38711458

ABSTRACT

Although adeno-associated virus 9 (AAV9) has been highly exploited as delivery platform for gene-based therapies, its efficacy is hampered by low efficiency in crossing the adult blood-brain barrier (BBB) and pronounced targeting to the liver upon intravenous delivery. We generated a new galactose binding-deficient AAV9 peptide display library and selected two new AAV9 engineered capsids with enhanced targeting in mouse and marmoset brains after intravenous delivery. Interestingly, the loss of galactose binding greatly reduced undesired targeting to peripheral organs, particularly the liver, while not compromising transduction of the brain vasculature. However, the galactose binding was necessary to efficiently infect non-endothelial brain cells. Thus, the combinatorial actions of the galactose-binding domain and the incorporated displayed peptide are crucial to enhance BBB crossing along with brain cell transduction. This study describes two novel capsids with high brain endothelial infectivity and extremely low liver targeting based on manipulating the AAV9 galactose-binding domain.

2.
Antioxidants (Basel) ; 13(4)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38671883

ABSTRACT

Down syndrome (DS) is a complex chromosomal disorder considered as a genetically determined form of Alzheimer's disease (AD). Maintenance of brain cholesterol homeostasis is essential for brain functioning and development, and its dysregulation is associated with AD neuroinflammation and oxidative damage. Brain cholesterol imbalances also likely occur in DS, concurring with the precocious AD-like neurodegeneration. In this pilot study, we analyzed, in the brain of the Ts2Cje (Ts2) mouse model of DS, the expression of genes encoding key enzymes involved in cholesterol metabolism and of the levels of cholesterol and its main precursors and products of its metabolism (i.e., oxysterols). The results showed, in Ts2 mice compared to euploid mice, the downregulation of the transcription of the genes encoding the enzymes 3-hydroxy-3-methylglutaryl-CoA reductase and 24-dehydrocholesterol reductase, the latter originally recognized as an indicator of AD, and the consequent reduction in total cholesterol levels. Moreover, the expression of genes encoding enzymes responsible for brain cholesterol oxidation and the amounts of the resulting oxysterols were modified in Ts2 mouse brains, and the levels of cholesterol autoxidation products were increased, suggesting an exacerbation of cerebral oxidative stress. We also observed an enhanced inflammatory response in Ts2 mice, underlined by the upregulation of the transcription of the genes encoding for α-interferon and interleukin-6, two cytokines whose synthesis is increased in the brains of AD patients. Overall, these results suggest that DS and AD brains share cholesterol cycle derangements and altered oxysterol levels, which may contribute to the oxidative and inflammatory events involved in both diseases.

3.
Nat Commun ; 14(1): 3962, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37407555

ABSTRACT

Huntington's disease (HD) is a neurodegenerative disorder caused by CAG-repeat expansions in the huntingtin (HTT) gene. The resulting mutant HTT (mHTT) protein induces toxicity and cell death via multiple mechanisms and no effective therapy is available. Here, we employ a genome-wide screening in pluripotent mouse embryonic stem cells (ESCs) to identify suppressors of mHTT toxicity. Among the identified suppressors, linked to HD-associated processes, we focus on Metal response element binding transcription factor 1 (Mtf1). Forced expression of Mtf1 counteracts cell death and oxidative stress caused by mHTT in mouse ESCs and in human neuronal precursor cells. In zebrafish, Mtf1 reduces malformations and apoptosis induced by mHTT. In R6/2 mice, Mtf1 ablates motor defects and reduces mHTT aggregates and oxidative stress. Our screening strategy enables a quick in vitro identification of promising suppressor genes and their validation in vivo, and it can be applied to other monogenic diseases.


Subject(s)
Huntington Disease , Neurodegenerative Diseases , Mice , Animals , Humans , Disease Models, Animal , Zebrafish/genetics , Zebrafish/metabolism , Huntington Disease/metabolism , Neurons/metabolism , Neurodegenerative Diseases/metabolism , Huntingtin Protein/genetics , Huntingtin Protein/metabolism
4.
Sci Rep ; 13(1): 6025, 2023 04 13.
Article in English | MEDLINE | ID: mdl-37055439

ABSTRACT

In proliferating multipotent retinal progenitors, transcription factors dynamics set the fate of postmitotic daughter cells, but postmitotic cell fate plasticity driven by extrinsic factors remains controversial. Transcriptome analysis reveals the concurrent expression by postmitotic rod precursors of genes critical for the Müller glia cell fate, which are rarely generated from terminally-dividing progenitors as a pair with rod precursors. By combining gene expression and functional characterisation in single cultured rod precursors, we identified a time-restricted window where increasing cell culture density switches off the expression of genes critical for Müller glial cells. Intriguingly, rod precursors in low cell culture density maintain the expression of genes of rod and glial cell fate and develop a mixed rod/Muller glial cells electrophysiological fingerprint, revealing rods derailment toward a hybrid rod-glial phenotype. The notion of cell culture density as an extrinsic factor critical for preventing rod-fated cells diversion toward a hybrid cell state may explain the occurrence of hybrid rod/MG cells in the adult retina and provide a strategy to improve engraftment yield in regenerative approaches to retinal degenerative disease by stabilising the fate of grafted rod precursors.


Subject(s)
Neuroglia , Retina , Retina/metabolism , Neuroglia/metabolism , Cell Differentiation/genetics , Transcription Factors/metabolism , Cell Culture Techniques
5.
Antioxidants (Basel) ; 12(3)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36978879

ABSTRACT

Considerable evidence indicates that cholesterol oxidation products, named oxysterols, play a key role in several events involved in Alzheimer's disease (AD) pathogenesis. Although the majority of oxysterols causes neuron dysfunction and degeneration, 24-hydroxycholesterol (24-OHC) has recently been thought to be neuroprotective also. The present study aimed at supporting this concept by exploring, in SK-N-BE neuroblastoma cells, whether 24-OHC affected the neuroprotective SIRT1/PGC1α/Nrf2 axis. We demonstrated that 24-OHC, through the up-regulation of the deacetylase SIRT1, was able to increase both PGC1α and Nrf2 expression and protein levels, as well as Nrf2 nuclear translocation. By acting on this neuroprotective pathway, 24-OHC favors tau protein clearance by triggering tau ubiquitination and subsequently its degradation through the ubiquitin-proteasome system. We also observed a modulation of SIRT1, PGC1α, and Nrf2 expression and synthesis in the brain of AD patients with the progression of the disease, suggesting their potential role in neuroprotection. These findings suggest that 24-OHC contributes to tau degradation through the up-regulation of the SIRT1/PGC1α/Nrf2 axis. Overall, the evidence points out the importance of avoiding 24-OHC loss, which can occur in the AD brain, and of limiting SIRT1, PGC1α, and Nrf2 deregulation in order to prevent the neurotoxic accumulation of hyperphosphorylated tau and counteract neurodegeneration.

6.
Blood ; 141(19): 2316-2329, 2023 05 11.
Article in English | MEDLINE | ID: mdl-36790505

ABSTRACT

Adeno-associated virus (AAV) vectors have been successfully exploited in gene therapy applications for the treatment of several genetic disorders. AAV is considered an episomal vector, but it has been shown to integrate within the host cell genome after the generation of double-strand DNA breaks or nicks. Although AAV integration raises some safety concerns, it can also provide therapeutic benefit; the direct intrathymic injection of an AAV harboring a therapeutic transgene results in integration in T-cell progenitors and long-term T-cell immunity. To assess the mechanisms of AAV integration, we retrieved and analyzed hundreds of AAV integration sites from lymph node-derived mature T cells and compared these with liver and brain tissue from treated mice. Notably, we found that although AAV integrations in the liver and brain were distributed across the entire mouse genome, >90% of the integrations in T cells were clustered within the T-cell receptor α, ß, and γ genes. More precisely, the insertion mapped to DNA breaks created by the enzymatic activity of recombination activating genes (RAGs) during variable, diversity, and joining recombination. Our data indicate that RAG activity during T-cell receptor maturation induces a site-specific integration of AAV genomes and opens new therapeutic avenues for achieving long-term AAV-mediated gene transfer in dividing cells.


Subject(s)
Genetic Therapy , Genetic Vectors , Mice , Animals , Genetic Vectors/genetics , Transgenes , Plasmids , Genetic Therapy/methods , Receptors, Antigen, T-Cell/genetics , Dependovirus/genetics , Virus Integration
7.
Elife ; 122023 01 16.
Article in English | MEDLINE | ID: mdl-36645345

ABSTRACT

Wolfram syndrome 1 (WS1) is a rare genetic disorder caused by mutations in the WFS1 gene leading to a wide spectrum of clinical dysfunctions, among which blindness, diabetes, and neurological deficits are the most prominent. WFS1 encodes for the endoplasmic reticulum (ER) resident transmembrane protein wolframin with multiple functions in ER processes. However, the WFS1-dependent etiopathology in retinal cells is unknown. Herein, we showed that Wfs1 mutant mice developed early retinal electrophysiological impairments followed by marked visual loss. Interestingly, axons and myelin disruption in the optic nerve preceded the degeneration of the retinal ganglion cell bodies in the retina. Transcriptomics at pre-degenerative stage revealed the STAT3-dependent activation of proinflammatory glial markers with reduction of the homeostatic and pro-survival factors glutamine synthetase and BDNF. Furthermore, label-free comparative proteomics identified a significant reduction of the monocarboxylate transport isoform 1 (MCT1) and its partner basigin that are highly enriched on retinal glia and myelin-forming oligodendrocytes in optic nerve together with wolframin. Loss of MCT1 caused a failure in lactate transfer from glial to neuronal cell bodies and axons leading to a chronic hypometabolic state. Thus, this bioenergetic impairment is occurring concurrently both within the axonal regions and cell bodies of the retinal ganglion cells, selectively endangering their survival while impacting less on other retinal cells. This metabolic dysfunction occurs months before the frank RGC degeneration suggesting an extended time-window for intervening with new therapeutic strategies focused on boosting retinal and optic nerve bioenergetics in WS1.


Subject(s)
Optic Atrophy , Wolfram Syndrome , Animals , Mice , Nerve Degeneration/metabolism , Neuroinflammatory Diseases , Retinal Ganglion Cells/metabolism , Wolfram Syndrome/genetics , Wolfram Syndrome/metabolism
8.
Antioxidants (Basel) ; 11(11)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36358540

ABSTRACT

The strongest genetic risk factor for sporadic Alzheimer's disease (AD) is the presence of the ε4 allele of the apolipoprotein E (ApoE) gene, the major apolipoprotein involved in brain cholesterol homeostasis. Being astrocytes the main producers of cholesterol and ApoE in the brain, we investigated the impact of the ApoE genotype on astrocyte cholesterol homeostasis. Two mouse astrocytic cell lines expressing the human ApoE3 or ApoE4 isoform were employed. Gas chromatography-mass spectrometry (GC-MS) analysis pointed out that the levels of total cholesterol, cholesterol precursors, and various oxysterols are altered in ApoE4 astrocytes. Moreover, the gene expression analysis of more than 40 lipid-related genes by qRT-PCR showed that certain genes are up-regulated (e.g., CYP27A1) and others down-regulated (e.g., PPARγ, LXRα) in ApoE4, compared to ApoE3 astrocytes. Beyond confirming the significant reduction in the levels of PPARγ, a key transcription factor involved in the maintenance of lipid homeostasis, Western blotting showed that both intracellular and secreted ApoE levels are altered in ApoE4 astrocytes, as well as the levels of receptors and transporters involved in lipid uptake/efflux (ABCA1, LDLR, LRP1, and ApoER2). Data showed that the ApoE genotype clearly affects astrocytic cholesterol homeostasis; however, further investigation is needed to clarify the mechanisms underlying these differences and the consequences on neighboring cells. Indeed, drug development aimed at restoring cholesterol homeostasis could be a potential strategy to counteract AD.

9.
Cell Death Dis ; 13(10): 881, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36261424

ABSTRACT

Triplication of the SNCA gene, encoding the protein alpha-Synuclein (αSyn), is a rare cause of aggressive and early-onset parkinsonism. Herein, we generated iPSCs from two siblings with a recently described compact SNCA gene triplication and suffering from severe motor impairments, psychiatric symptoms, and cognitive deterioration. Using CRISPR/Cas9 gene editing, each SNCA copy was inactivated by targeted indel mutations generating a panel of isogenic iPSCs with a decremental number from 4 down to none of functional SNCA gene alleles. We differentiated these iPSC lines in midbrain dopaminergic (DA) neuronal cultures to characterize αSyn aggregation in native and seeded conditions and evaluate its associated cellular dysfunctions. Utilizing a new nanobody-based biosensor combined with super-resolved imaging, we were able to visualize and measure αSyn aggregates in early DA neurons in unstimulated conditions. Calcium dysregulation and mitochondrial alterations were the first pathological signs detectable in early differentiated DA neuronal cultures. Accelerated αSyn aggregation was induced by exposing neurons to structurally well-characterized synthetic αSyn fibrils. 4xSNCA DA neurons showed the highest vulnerability, which was associated with high levels of oxidized DA and amplified by TAX1BP1 gene disruption. Seeded DA neurons developed large αSyn deposits whose morphology and internal constituents resembled Lewy bodies commonly observed in Parkinson's disease (PD) patient brain tissues. These findings provide strong evidence that this isogenic panel of iPSCs with SNCA multiplications offers a remarkable cellular platform to investigate mechanisms of PD and validate candidate inhibitors of native and seeded αSyn aggregation.


Subject(s)
Induced Pluripotent Stem Cells , Parkinson Disease , Humans , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Dopaminergic Neurons/metabolism , Induced Pluripotent Stem Cells/metabolism , Calcium/metabolism , Parkinson Disease/metabolism
10.
Cell Rep ; 39(8): 110857, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35613587

ABSTRACT

Protocadherin-19 (PCDH19) is a synaptic cell-adhesion molecule encoded by X-linked PCDH19, a gene linked with epilepsy. Here, we report a synapse-to-nucleus signaling pathway through which PCDH19 bridges neuronal activity with gene expression. In particular, we describe the NMDA receptor (NMDAR)-dependent proteolytic cleavage of PCDH19, which leads to the generation of a PCDH19 C-terminal fragment (CTF) able to enter the nucleus. We demonstrate that PCDH19 CTF associates with chromatin and with the chromatin remodeler lysine-specific demethylase 1 (LSD1) and regulates expression of immediate-early genes (IEGs). Our results are consistent with a model whereby PCDH19 favors maintenance of neuronal homeostasis via negative feedback regulation of IEG expression and provide a key to interpreting PCDH19-related hyperexcitability.


Subject(s)
Cadherins , Epilepsy , Genes, Immediate-Early , Protocadherins , Cadherins/genetics , Cadherins/metabolism , Chromatin/genetics , Chromatin/metabolism , Epilepsy/genetics , Epilepsy/metabolism , Gene Expression Regulation , Humans , Protocadherins/genetics , Protocadherins/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Signal Transduction
11.
Free Radic Biol Med ; 181: 251-269, 2022 03.
Article in English | MEDLINE | ID: mdl-35158030

ABSTRACT

Chronic inflammation represents a main event in the onset and progression of atherosclerosis and is closely associated with oxidative stress in a sort of vicious circle that amplifies and sustains all stages of the disease. Key players of atherosclerosis are monocytes/macrophages. According to their pro- or anti-inflammatory phenotype and biological functions, lesional macrophages can release various mediators and enzymes, which in turn contribute to plaque progression and destabilization or, alternatively, lead to its resolution. Among the factors connected to atherosclerotic disease, lipid species carried by low density lipoproteins and pro-oxidant stimuli strongly promote inflammatory events in the vasculature, also by modulating the macrophage phenotyping. Therapies specifically aimed to balance macrophage inflammatory state are increasingly considered as powerful tools to counteract plaque formation and destabilization. In this connection, several molecules of natural origin have been recognized to be active mediators of diverse metabolic and signaling pathways regulating lipid homeostasis, redox state, and inflammation; they are, thus, considered as promising candidates to modulate macrophage responsiveness to pro-atherogenic stimuli. The current knowledge of the capability of nutraceuticals to target macrophage polarization and to counteract atherosclerotic lesion progression, based mainly on in vitro investigation, is summarized in the present review.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Atherosclerosis/metabolism , Dietary Supplements , Humans , Inflammation/metabolism , Macrophage Activation , Macrophages/metabolism , Plaque, Atherosclerotic/metabolism
12.
Nat Commun ; 13(1): 161, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013317

ABSTRACT

Dravet syndrome is a severe epileptic encephalopathy caused primarily by haploinsufficiency of the SCN1A gene. Repetitive seizures can lead to endurable and untreatable neurological deficits. Whether this severe pathology is reversible after symptom onset remains unknown. To address this question, we generated a Scn1a conditional knock-in mouse model (Scn1a Stop/+) in which Scn1a expression can be re-activated on-demand during the mouse lifetime. Scn1a gene disruption leads to the development of seizures, often associated with sudden unexpected death in epilepsy (SUDEP) and behavioral alterations including hyperactivity, social interaction deficits and cognitive impairment starting from the second/third week of age. However, we showed that Scn1a gene re-activation when symptoms were already manifested (P30) led to a complete rescue of both spontaneous and thermic inducible seizures, marked amelioration of behavioral abnormalities and normalization of hippocampal fast-spiking interneuron firing. We also identified dramatic gene expression alterations, including those associated with astrogliosis in Dravet syndrome mice, that, accordingly, were rescued by Scn1a gene expression normalization at P30. Interestingly, regaining of Nav1.1 physiological level rescued seizures also in adult Dravet syndrome mice (P90) after months of repetitive attacks. Overall, these findings represent a solid proof-of-concept highlighting that disease phenotype reversibility can be achieved when Scn1a gene activity is efficiently reconstituted in brain cells.


Subject(s)
Cognitive Dysfunction/genetics , Epilepsies, Myoclonic/genetics , Hippocampus/metabolism , Interneurons/metabolism , NAV1.1 Voltage-Gated Sodium Channel/genetics , Sudden Unexpected Death in Epilepsy/prevention & control , Action Potentials/physiology , Animals , Cerebellum/metabolism , Cerebellum/physiopathology , Cerebral Cortex/metabolism , Cerebral Cortex/physiopathology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/prevention & control , Corpus Striatum/metabolism , Corpus Striatum/physiopathology , Dependovirus/genetics , Dependovirus/metabolism , Disease Models, Animal , Epilepsies, Myoclonic/metabolism , Epilepsies, Myoclonic/physiopathology , Epilepsies, Myoclonic/prevention & control , Gene Knock-In Techniques , Genetic Therapy/methods , Hippocampus/physiopathology , Humans , Interneurons/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , NAV1.1 Voltage-Gated Sodium Channel/deficiency , Sudden Unexpected Death in Epilepsy/pathology
14.
Antioxidants (Basel) ; 10(12)2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34943002

ABSTRACT

In recent decades, the impairment of cholesterol metabolism in the pathogenesis of Alzheimer's disease (AD) has been intensively investigated, and it has been recognized to affect amyloid ß (Aß) production and clearance, tau phosphorylation, neuroinflammation and degeneration. In particular, the key role of cholesterol oxidation products, named oxysterols, has emerged. Brain cholesterol metabolism is independent from that of peripheral tissues and it must be preserved in order to guarantee cerebral functions. Among the cells that help maintain brain cholesterol homeostasis, astrocytes play a starring role since they deliver de novo synthesized cholesterol to neurons. In addition, other physiological roles of astrocytes are to modulate synaptic transmission and plasticity and support neurons providing energy. In the AD brain, astrocytes undergo significant morphological and functional changes that contribute to AD onset and development. However, the extent of this contribution and the role played by oxysterols are still unclear. Here we review the current understanding of the physiological role exerted by astrocytes in the brain and their contribution to AD pathogenesis. In particular, we focus on the impact of cholesterol dysmetabolism on astrocyte functions suggesting new potential approaches to develop therapeutic strategies aimed at counteracting AD development.

15.
Nat Commun ; 12(1): 6237, 2021 10 29.
Article in English | MEDLINE | ID: mdl-34716339

ABSTRACT

Recent findings in human samples and animal models support the involvement of inflammation in the development of Parkinson's disease. Nevertheless, it is currently unknown whether microglial activation constitutes a primary event in neurodegeneration. We generated a new mouse model by lentiviral-mediated selective α-synuclein (αSYN) accumulation in microglial cells. Surprisingly, these mice developed progressive degeneration of dopaminergic (DA) neurons without endogenous αSYN aggregation. Transcriptomics and functional assessment revealed that αSYN-accumulating microglial cells developed a strong reactive state with phagocytic exhaustion and excessive production of oxidative and proinflammatory molecules. This inflammatory state created a molecular feed-forward vicious cycle between microglia and IFNγ-secreting immune cells infiltrating the brain parenchyma. Pharmacological inhibition of oxidative and nitrosative molecule production was sufficient to attenuate neurodegeneration. These results suggest that αSYN accumulation in microglia induces selective DA neuronal degeneration by promoting phagocytic exhaustion, an excessively toxic environment and the selective recruitment of peripheral immune cells.


Subject(s)
Dopaminergic Neurons/pathology , Microglia/metabolism , Nerve Degeneration/pathology , Phagocytosis/physiology , alpha-Synuclein/metabolism , Adaptive Immunity/physiology , Animals , CX3C Chemokine Receptor 1/genetics , CX3C Chemokine Receptor 1/metabolism , Encephalitis/metabolism , Encephalitis/pathology , Gene Expression , Immunity, Innate/physiology , Male , Mice, Inbred C57BL , Mice, Transgenic , Microglia/drug effects , Microglia/pathology , Nitric Oxide/metabolism , Nitric Oxide/toxicity , Parkinson Disease/pathology , Reactive Oxygen Species/metabolism , Substantia Nigra/metabolism , Substantia Nigra/pathology , alpha-Synuclein/genetics
16.
Antioxidants (Basel) ; 10(5)2021 May 07.
Article in English | MEDLINE | ID: mdl-34067119

ABSTRACT

The development of Alzheimer's disease (AD) is influenced by several events, among which the dysregulation of cholesterol metabolism in the brain plays a major role. Maintenance of brain cholesterol homeostasis is essential for neuronal functioning and brain development. To maintain the steady-state level, excess brain cholesterol is converted into the more hydrophilic metabolite 24-S-hydroxycholesterol (24-OHC), also called cerebrosterol, by the neuron-specific enzyme CYP46A1. A growing bulk of evidence suggests that cholesterol oxidation products, named oxysterols, are the link connecting altered cholesterol metabolism to AD. It has been shown that the levels of some oxysterols, including 27-hydroxycholesterol, 7ß-hydroxycholesterol and 7-ketocholesterol, significantly increase in AD brains contributing to disease progression. In contrast, 24-OHC levels decrease, likely due to neuronal loss. Among the different brain oxysterols, 24-OHC is certainly the one whose role is most controversial. It is the dominant oxysterol in the brain and evidence shows that it represents a signaling molecule of great importance for brain function. However, numerous studies highlighted the potential role of 24-OHC in favoring AD development, since it promotes neuroinflammation, amyloid ß (Aß) peptide production, oxidative stress and cell death. In parallel, 24-OHC has been shown to exert several beneficial effects against AD progression, such as preventing tau hyperphosphorylation and Aß production. In this review we focus on the current knowledge of the controversial role of 24-OHC in AD pathogenesis, reporting a detailed overview of the findings about its levels in different AD biological samples and its noxious or neuroprotective effects in the brain. Given the relevant role of 24-OHC in AD pathophysiology, its targeting could be useful for disease prevention or slowing down its progression.

17.
Biochimie ; 181: 191-203, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33359561

ABSTRACT

Atherosclerosis is a degenerative disease characterized by lesions that develop in the wall of large- and medium-sized arteries due to the accumulation of low-density lipoproteins (LDLs) in the intima. A growing bulk of evidence suggests that cholesterol oxidation products, known as oxysterols, and the aldehyde 4-hydroxy-2-nonenal (HNE), the major pro-atherogenic components of oxidized LDLs, significantly contribute to atherosclerotic plaque progression and destabilization, with eventual plaque rupture. The involvement of certain members of the protein convertase subtilisin/kexin proteases (PCSKs) in atherosclerosis has been recently hypothesized. Among them, PCSK6 has been associated with plaque instability, mainly thanks to its ability to stimulate the activity of matrix metalloproteinases (MMPs) involved in extracellular matrix remodeling and to enhance inflammation. In U937 promonocytic cells and in human umbilical vein endothelial cells, an oxysterol mixture and HNE were able to up-regulate the level and activity of PCSK6, resulting in MMP-9 activation as demonstrated by PCSK6 silencing. Inflammation, enhanced by these lipid oxidation products, plays a key role in the up-regulation of PCSK6 activity as demonstrated by cell pretreatment with NS-398, with epigallocatechin gallate or with acetylsalicylic acid, all with anti-inflammatory effects. For the first time, we demonstrated that both oxysterols and HNE, which substantially accumulate in the atherosclerotic plaque, up-regulate the activity of PCSK6. Of note, we also suggest a potential association between PCSK6 activity and MMP-9 activation, pointing out that PCSK6 could contribute to atherosclerotic plaque development.


Subject(s)
Atherosclerosis/enzymology , Gene Expression Regulation, Enzymologic , Lipid Metabolism , Plaque, Atherosclerotic/enzymology , Proprotein Convertases/biosynthesis , Serine Endopeptidases/biosynthesis , Up-Regulation , Atherosclerosis/genetics , Atherosclerosis/pathology , Human Umbilical Vein Endothelial Cells , Humans , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Oxysterols/metabolism , Plaque, Atherosclerotic/genetics , Plaque, Atherosclerotic/pathology , Proprotein Convertases/genetics , Serine Endopeptidases/genetics , U937 Cells
18.
Redox Biol ; 39: 101837, 2021 02.
Article in English | MEDLINE | ID: mdl-33360775

ABSTRACT

Among Alzheimer's disease (AD) brain hallmarks, the presence of reactive astrocytes was demonstrated to correlate with neuronal loss and cognitive deficits. Evidence indeed supports the role of reactive astrocytes as mediators of changes in neurons, including synapses. However, the complexity and the outcomes of astrocyte reactivity are far from being completely elucidated. Another key role in AD pathogenesis is played by alterations in brain cholesterol metabolism. Oxysterols (cholesterol oxidation products) are crucial for brain cholesterol homeostasis, and we previously demonstrated that changes in the brain levels of various oxysterols correlate with AD progression. Moreover, oxysterols have been shown to contribute to various pathological mechanisms involved in AD pathogenesis. In order to deepen the role of oxysterols in AD, we investigated whether they could contribute to astrocyte reactivity, and consequently impact on neuronal health. Results showed that oxysterols present in mild or severe AD brains induce a clear morphological change in mouse primary astrocytes, accompanied by the upregulation of some reactive astrocyte markers, including lipocalin-2 (Lcn2). Moreover, astrocyte conditioned media analysis revealed a significant increase in the release of Lcn2, cytokines, and chemokines in response to oxysterols. A significant reduction of postsynaptic density protein 95 (PSD95) and a concurrent increase in cleaved caspase-3 protein levels have been demonstrated in neurons co-cultured with oxysterol-treated astrocytes, pointing out that mediators released by astrocytes have an impact on neurons. Among these mediators, Lcn2 has been demonstrated to play a major role on synapses, affecting neurite morphology and decreasing dendritic spine density. These data demonstrated that oxysterols present in the AD brain promote astrocyte reactivity, determining the release of several mediators that affect neuronal health and synapses. Lcn2 has been shown to exert a key role in mediating the synaptotoxic effect of oxysterol-treated astrocytes.


Subject(s)
Alzheimer Disease , Oxysterols , Animals , Astrocytes/metabolism , Brain/metabolism , Lipocalin-2/metabolism , Mice
19.
Nat Commun ; 11(1): 4178, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32826895

ABSTRACT

Friedreich's ataxia (FRDA) is an autosomal-recessive neurodegenerative and cardiac disorder which occurs when transcription of the FXN gene is silenced due to an excessive expansion of GAA repeats into its first intron. Herein, we generate dorsal root ganglia organoids (DRG organoids) by in vitro differentiation of human iPSCs. Bulk and single-cell RNA sequencing show that DRG organoids present a transcriptional signature similar to native DRGs and display the main peripheral sensory neuronal and glial cell subtypes. Furthermore, when co-cultured with human intrafusal muscle fibers, DRG organoid sensory neurons contact their peripheral targets and reconstitute the muscle spindle proprioceptive receptors. FRDA DRG organoids model some molecular and cellular deficits of the disease that are rescued when the entire FXN intron 1 is removed, and not with the excision of the expanded GAA tract. These results strongly suggest that removal of the repressed chromatin flanking the GAA tract might contribute to rescue FXN total expression and fully revert the pathological hallmarks of FRDA DRG neurons.


Subject(s)
Friedreich Ataxia/genetics , Friedreich Ataxia/pathology , Ganglia, Spinal/metabolism , Gene Editing/methods , Iron-Binding Proteins/genetics , Organoids/metabolism , Sensory Receptor Cells/metabolism , Antioxidants/pharmacology , CRISPR-Cas Systems , Cell Differentiation , Chromatin/metabolism , Friedreich Ataxia/drug therapy , Ganglia, Spinal/drug effects , Ganglia, Spinal/pathology , Genetic Predisposition to Disease/genetics , Humans , Induced Pluripotent Stem Cells/metabolism , Introns , Mitochondria/metabolism , Organoids/drug effects , Organoids/pathology , Sensory Receptor Cells/pathology , Sequence Analysis, RNA , Transcriptome , Frataxin
20.
Brain ; 143(3): 891-905, 2020 03 01.
Article in English | MEDLINE | ID: mdl-32129831

ABSTRACT

Epilepsy is a major health burden, calling for new mechanistic insights and therapies. CRISPR-mediated gene editing shows promise to cure genetic pathologies, although hitherto it has mostly been applied ex vivo. Its translational potential for treating non-genetic pathologies is still unexplored. Furthermore, neurological diseases represent an important challenge for the application of CRISPR, because of the need in many cases to manipulate gene function of neurons in situ. A variant of CRISPR, CRISPRa, offers the possibility to modulate the expression of endogenous genes by directly targeting their promoters. We asked if this strategy can effectively treat acquired focal epilepsy, focusing on ion channels because their manipulation is known be effective in changing network hyperactivity and hypersynchronziation. We applied a doxycycline-inducible CRISPRa technology to increase the expression of the potassium channel gene Kcna1 (encoding Kv1.1) in mouse hippocampal excitatory neurons. CRISPRa-mediated Kv1.1 upregulation led to a substantial decrease in neuronal excitability. Continuous video-EEG telemetry showed that AAV9-mediated delivery of CRISPRa, upon doxycycline administration, decreased spontaneous generalized tonic-clonic seizures in a model of temporal lobe epilepsy, and rescued cognitive impairment and transcriptomic alterations associated with chronic epilepsy. The focal treatment minimizes concerns about off-target effects in other organs and brain areas. This study provides the proof-of-principle for a translational CRISPR-based approach to treat neurological diseases characterized by abnormal circuit excitability.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Cognitive Dysfunction/genetics , Cognitive Dysfunction/prevention & control , Epilepsy, Temporal Lobe/prevention & control , Gene Editing/methods , Kv1.1 Potassium Channel/biosynthesis , Adenoviridae , Animals , Electroencephalography , Epilepsy, Temporal Lobe/complications , Female , Hippocampus/metabolism , Male , Membrane Potentials/genetics , Membrane Potentials/physiology , Mice , Neurons/physiology , Primary Cell Culture , Transfection , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...