Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
J Tissue Eng ; 13: 20417314221119615, 2022.
Article in English | MEDLINE | ID: mdl-36093431

ABSTRACT

Chronic wounds in type-2 diabetic patients present areas of severe local skin ischemia despite mostly normal blood flow in deeper large arteries. Therefore, restoration of blood perfusion requires the opening of arterial connections from the deep vessels to the superficial skin layer, that is, arteriogenesis. Arteriogenesis is regulated differently from microvascular angiogenesis and is optimally stimulated by high doses of Vascular Endothelial Growth Factor-A (VEGF) together with Platelet-Derived Growth Factor-BB (PDGF-BB). Here we found that fibrin hydrogels decorated with engineered versions of VEGF and PDGF-BB proteins, to ensure protection from degradation and controlled delivery, efficiently accelerated wound closure in diabetic and obese db/db mice, promoting robust microvascular growth and a marked increase in feeding arterioles. Notably, targeting the arteriogenic factors to the intact arterio-venous networks in the dermis around the wound was more effective than the routine treatment of the inflamed wound bed. This approach is readily translatable to a clinical setting.

2.
Front Bioeng Biotechnol ; 9: 688467, 2021.
Article in English | MEDLINE | ID: mdl-34277588

ABSTRACT

Non-healing ulcers are a serious complication of diabetes mellitus and a major unmet medical need. A major cause for the lack of healing is the impairment of spontaneous vascularization in the skin, despite mostly normal blood flow in deeper large vessels. Therefore, pro-angiogenic treatments are needed to increase therapeutic perfusion by recruiting new arterial connections (therapeutic arteriogenesis). Vascular endothelial growth factor (VEGF) is the master regulator of angiogenesis in physiology and disease, but exploitation of its therapeutic potential requires careful control of its dose distribution in tissue. Co-delivery of platelet derived growth factor-BB (PDGF-BB) has been shown to expand the therapeutic window of VEGF and also improve associated arteriogenesis. We used a highly controlled protein delivery system, based on a clinically applicable fibrin-based platform, to investigate the angiogenic and arteriogenic potential of engineered versions (TG-) of VEGF and PDGF-BB proteins in the skin of diabetic and obese db/db mice. Intradermal delivery of therapeutically relevant doses of TG-VEGF and TG-PDGF-BB induced robust growth of new microvascular networks with similar efficacy as in normal littermate control mice. Further, TG-PDGF-BB prevented the formation of aberrant vascular enlargements by high TG-VEGF levels. As fibrin was degraded after the first week, the induced angiogenesis mostly regressed by 4 weeks, but it promoted effective arteriogenesis in the dermal layer. Therefore, controlled co-delivery of TG-VEGF and TG-PDGF-BB recombinant proteins is effective to induce angiogenesis and arteriogenesis in diabetic mouse skin and should be further investigated to promote diabetic wound healing.

3.
Cell Metab ; 31(6): 1136-1153.e7, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32492393

ABSTRACT

Endothelial cell (EC)-derived signals contribute to organ regeneration, but angiocrine metabolic communication is not described. We found that EC-specific loss of the glycolytic regulator pfkfb3 reduced ischemic hindlimb revascularization and impaired muscle regeneration. This was caused by the reduced ability of macrophages to adopt a proangiogenic and proregenerative M2-like phenotype. Mechanistically, loss of pfkfb3 reduced lactate secretion by ECs and lowered lactate levels in the ischemic muscle. Addition of lactate to pfkfb3-deficient ECs restored M2-like polarization in an MCT1-dependent fashion. Lactate shuttling by ECs enabled macrophages to promote proliferation and fusion of muscle progenitors. Moreover, VEGF production by lactate-polarized macrophages was increased, resulting in a positive feedback loop that further stimulated angiogenesis. Finally, increasing lactate levels during ischemia rescued macrophage polarization and improved muscle reperfusion and regeneration, whereas macrophage-specific mct1 deletion prevented M2-like polarization. In summary, ECs exploit glycolysis for angiocrine lactate shuttling to steer muscle regeneration from ischemia.


Subject(s)
Endothelial Cells/chemistry , Ischemia/metabolism , Lactates/pharmacology , Macrophages/drug effects , Muscle, Skeletal/drug effects , Animals , Cells, Cultured , Ischemia/pathology , Macrophage Activation/drug effects , Macrophages/metabolism , Mice , Mice, Knockout , Mice, Transgenic , Muscle, Skeletal/metabolism
4.
Stem Cells Transl Med ; 9(4): 433-444, 2020 04.
Article in English | MEDLINE | ID: mdl-31922362

ABSTRACT

Therapeutic angiogenesis, that is, the generation of new vessels by delivery of specific factors, is required both for rapid vascularization of tissue-engineered constructs and to treat ischemic conditions. Vascular endothelial growth factor (VEGF) is the master regulator of angiogenesis. However, uncontrolled expression can lead to aberrant vascular growth and vascular tumors (angiomas). Major challenges to fully exploit VEGF potency for therapy include the need to precisely control in vivo distribution of growth factor dose and duration of expression. In fact, the therapeutic window of VEGF delivery depends on its amount in the microenvironment around each producing cell rather than on the total dose, since VEGF remains tightly bound to extracellular matrix (ECM). On the other hand, short-term expression of less than about 4 weeks leads to unstable vessels, which promptly regress following cessation of the angiogenic stimulus. Here, we will briefly overview some key aspects of the biology of VEGF and angiogenesis and discuss their therapeutic implications with a particular focus on approaches using gene therapy, genetically modified progenitors, and ECM engineering with recombinant factors. Lastly, we will present recent insights into the mechanisms that regulate vessel stabilization and the switch between normal and aberrant vascular growth after VEGF delivery, to identify novel molecular targets that may improve both safety and efficacy of therapeutic angiogenesis.


Subject(s)
Neovascularization, Physiologic , Regenerative Medicine , Animals , Gene Transfer Techniques , Humans , Monocytes/cytology , Pericytes/cytology , Protein Engineering
5.
J Cereb Blood Flow Metab ; 40(2): 404-419, 2020 02.
Article in English | MEDLINE | ID: mdl-30621518

ABSTRACT

The myoblast-mediated delivery of angiogenic genes represents a cell-based approach for targeted induction of therapeutic collateralization. Here, we tested the superiority of myoblast-mediated co-delivery of vascular endothelial growth factor-A (VEGF) together with platelet-derived growth factor-BB (PDGF-BB) on transpial collateralization of an indirect encephalomyosynangiosis (EMS) in a model of chronic cerebral ischemia. Mouse myoblasts expressing a reporter gene alone (empty vector), VEGF, PDGF-BB or VEGF and PDGF-BB through a single bi-cistronic vector (VIP) were implanted into the temporalis muscle of an EMS following permanent ipsilateral internal carotid artery occlusion in adult, male C57BL/6N mice. Over 84 days, myoblast engraftment and gene product expression, hemodynamic impairment, transpial collateralization, angiogenesis, pericyte recruitment and post-ischemic neuroprotection were assessed. By day 42, animals that received PDGF-BB in combination with VEGF (VIP) showed superior hemodynamic recovery, EMS collateralization and ischemic protection with improved pericyte recruitment around the parenchymal vessels and EMS collaterals. Also, supplementation of PDGF-BB resulted in a striking astrocytic activation with intrinsic VEGF mobilization in the cortex below the EMS. Our findings suggest that EMS surgery together with myoblast-mediated co-delivery of VEGF/PDGF-BB may have the potential to serve as a novel treatment strategy for augmentation of collateral flow in the chronically hypoperfused brain.


Subject(s)
Becaplermin , Brain Ischemia , Cerebral Cortex , Cerebrovascular Circulation , Genetic Vectors , Myoblasts , Vascular Endothelial Growth Factor A , Animals , Becaplermin/biosynthesis , Becaplermin/genetics , Brain Ischemia/genetics , Brain Ischemia/metabolism , Brain Ischemia/physiopathology , Brain Ischemia/therapy , Cerebral Cortex/blood supply , Cerebral Cortex/metabolism , Chronic Disease , Male , Mice , Muscle, Skeletal/metabolism , Myoblasts/metabolism , Myoblasts/transplantation , Vascular Endothelial Growth Factor A/biosynthesis , Vascular Endothelial Growth Factor A/genetics
6.
Adv Mater ; 31(21): e1808050, 2019 May.
Article in English | MEDLINE | ID: mdl-30924979

ABSTRACT

Vascularization is a critical step in the restoration of cellular homeostasis. Several strategies including localized growth factor delivery, endothelial progenitor cells, genetically engineered cells, gene therapy, and prevascularized implants have been explored to promote revascularization. But, long-term stabilization of newly induced vessels remains a challenge. It has been shown that fibroblasts and mesenchymal stem cells can stabilize newly induced vessels. However, whether an injected biomaterial alone can serve as an instructive environment for angiogenesis remains to be elucidated. It is reported here that appropriate vascular branching, and long-term stabilization can be promoted simply by implanting a hydrogel with stiffness matching that of fibrin clot. A unique subpopulation of circulating CD11b+ myeloid and CD11b+ /CD115+ monocytes that express the stretch activated cation channel Piezo-1, which is enriched prominently in the clot-like hydrogel, is identified. These findings offer evidence for a mechanobiology paradigm in angiogenesis involving an interplay between mechanosensitive circulating cells and mechanics of tissue microenvironment.


Subject(s)
CD11b Antigen/metabolism , Cellular Microenvironment , Hydrogels , Ion Channels/metabolism , Mechanical Phenomena , Microvessels/cytology , Monocytes/metabolism , Receptor, Macrophage Colony-Stimulating Factor/metabolism , Sepharose/chemistry , Animals , Cell Count , Cell Proliferation/drug effects , Endothelial Cells/metabolism , Leukocytes, Mononuclear/metabolism , Mice, SCID , Microvessels/metabolism , Neovascularization, Physiologic , Signal Transduction
7.
Swiss Med Wkly ; 149: w20011, 2019 01 14.
Article in English | MEDLINE | ID: mdl-30685867

ABSTRACT

Despite major advances in medical, catheter-based or surgical treatment, cardiovascular diseases such as peripheral artery disease and coronary artery disease still cause significant morbidity and mortality. Furthermore, many patients do not qualify for catheter-based treatment or bypass surgery because of advanced disease or surgical risk. There is therefore an urgent need for novel treatment strategies. Therapeutic angiogenesis aims to restore blood flow to ischaemic tissue by stimulating the growth of new blood vessels through the local delivery of angiogenic factors, and may thus be an attractive treatment alternative for these patients. Angiogenesis is a complex process and the growth of normal, stable and functional vasculature depends on the coordinated interplay of different cell types and growth factors. Vascular endothelial growth factor-A (VEGF) is the fundamental regulator of vascular growth and the key target of therapeutic angiogenesis approaches. However, first-generation clinical trials of VEGF gene therapy have been disappointing, and a clear clinical benefit has yet to be established. In particular, VEGF delivery (a) appears to have a very limited therapeutic window in vivo: low doses are safe but mostly inefficient, whereas higher doses become rapidly unsafe; and (b) requires a sustained expression in vivo of at least about four weeks to achieve stable vessels that persist after cessation of the angiogenic stimulus. Here we will review the current understanding of how VEGF induces the growth of normal or pathological blood vessels, what limitations for the controlled induction of safe and efficient angiogenesis are intrinsically linked to the biological properties of VEGF, and how this knowledge can guide the design of more effective strategies for therapeutic angiogenesis.


Subject(s)
Ischemia/therapy , Neovascularization, Physiologic , Vascular Endothelial Growth Factor A/metabolism , Angiogenesis Inducing Agents/administration & dosage , Animals , Becaplermin/administration & dosage , Humans
8.
EMBO Rep ; 19(5)2018 05.
Article in English | MEDLINE | ID: mdl-29643120

ABSTRACT

Vascular endothelial growth factor (VEGF) is the master regulator of angiogenesis, whose best-understood mechanism is sprouting. However, therapeutic VEGF delivery to ischemic muscle induces angiogenesis by the alternative process of intussusception, or vascular splitting, whose molecular regulation is essentially unknown. Here, we identify ephrinB2/EphB4 signaling as a key regulator of intussusceptive angiogenesis and its outcome under therapeutically relevant conditions. EphB4 signaling fine-tunes the degree of endothelial proliferation induced by specific VEGF doses during the initial stage of circumferential enlargement of vessels, thereby limiting their size and subsequently enabling successful splitting into normal capillary networks. Mechanistically, EphB4 neither inhibits VEGF-R2 activation by VEGF nor its internalization, but it modulates VEGF-R2 downstream signaling through phospho-ERK1/2. In vivo inhibitor experiments show that ERK1/2 activity is required for EphB4 regulation of VEGF-induced intussusceptive angiogenesis. Lastly, after clinically relevant VEGF gene delivery with adenoviral vectors, pharmacological stimulation of EphB4 normalizes dysfunctional vascular growth in both normoxic and ischemic muscle. These results identify EphB4 as a druggable target to modulate the outcome of VEGF gene delivery and support further investigation of its therapeutic potential.


Subject(s)
Ephrin-B2/metabolism , Myoblasts/metabolism , Neovascularization, Pathologic/metabolism , Receptor, EphB4/metabolism , Signal Transduction , Vascular Endothelial Growth Factor A/metabolism , Animals , Cells, Cultured , Endothelial Cells/metabolism , Female , Humans , Intussusception , Ischemia/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, SCID , Muscle, Skeletal/pathology , Neovascularization, Pathologic/pathology , Phosphorylation , Vascular Endothelial Growth Factor Receptor-2/metabolism
9.
Sci Rep ; 7: 41842, 2017 02 07.
Article in English | MEDLINE | ID: mdl-28169309

ABSTRACT

A detailed vascular visualization and adequate quantification is essential for the proper assessment of novel angiomodulating strategies. Here, we introduce an ex vivo micro-computed tomography (microCT)-based imaging approach for the 3D visualization of the entire vasculature down to the capillary level and rapid estimation of the vascular volume and vessel size distribution. After perfusion with µAngiofil®, a novel polymerizing contrast agent, low- and high-resolution scans (voxel side length: 2.58-0.66 µm) of the entire vasculature were acquired. Based on the microCT data, sites of interest were defined and samples further processed for correlative morphology. The solidified, autofluorescent µAngiofil® remained in the vasculature and allowed co-registering of the histological sections with the corresponding microCT-stack. The perfusion efficiency of µAngiofil® was validated based on lectin-stained histological sections: 98 ± 0.5% of the blood vessels were µAngiofil®-positive, whereas 93 ± 2.6% were lectin-positive. By applying this approach we analyzed the angiogenesis induced by the cell-based delivery of a controlled VEGF dose. Vascular density increased by 426% mainly through the augmentation of medium-sized vessels (20-40 µm). The introduced correlative and quantitative imaging approach is highly reproducible and allows a detailed 3D characterization of the vasculature and muscle tissue. Combined with histology, a broad range of complementary structural information can be obtained.


Subject(s)
Blood Vessels/diagnostic imaging , Muscle, Skeletal/diagnostic imaging , X-Ray Microtomography/methods , Animals , Blood Vessels/drug effects , Blood Vessels/physiology , Cells, Cultured , Fluorescent Dyes/pharmacokinetics , Hindlimb/blood supply , Hindlimb/diagnostic imaging , Mice , Mice, SCID , Muscle, Skeletal/blood supply , Neovascularization, Physiologic , Optical Imaging/methods , Vascular Endothelial Growth Factor A/pharmacology
10.
Sci Rep ; 6: 21546, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26882992

ABSTRACT

Therapeutic angiogenesis by growth factor delivery is an attractive treatment strategy for ischemic diseases, yet clinical efficacy has been elusive. The angiogenic master regulator VEGF-A can induce aberrant angiogenesis if expressed above a threshold level. Since VEGF remains localized in the matrix around expressing cells, homogeneous dose distribution in target tissues is required, which is challenging. We found that co-expression of the pericyte-recruiting factor PDGF-BB at a fixed ratio with VEGF from a single bicistronic vector ensured normal angiogenesis despite heterogeneous high VEGF levels. Taking advantage of a highly controlled gene delivery platform, based on monoclonal populations of transduced myoblasts, in which every cell stably produces the same amount of each factor, here we rigorously investigated a) the dose-dependent effects, and b) the long-term safety and stability of VEGF and PDGF-BB co-expression in skeletal muscle. PDGF-BB co-expression did not affect the normal angiogenesis by low and medium VEGF doses, but specifically prevented vascular tumors by high VEGF, yielding instead normal and mature capillary networks, accompanied by robust arteriole formation. Induced angiogenesis persisted unchanged up to 4 months, while no tumors appeared. Therefore, PDGF-BB co-expression is an attractive strategy to improve safety and efficacy of therapeutic angiogenesis by VEGF gene delivery.


Subject(s)
Gene Expression , Genetic Vectors/genetics , Muscle, Skeletal/metabolism , Neovascularization, Physiologic/genetics , Proto-Oncogene Proteins c-sis/genetics , Vascular Endothelial Growth Factor A/genetics , Animals , Becaplermin , Genes, Reporter , Mice , Myoblasts/metabolism , Myoblasts/transplantation , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism
11.
EMBO Mol Med ; 7(10): 1366-84, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26323572

ABSTRACT

VEGF is widely investigated for therapeutic angiogenesis, but while short-term delivery is desirable for safety, it is insufficient for new vessel persistence, jeopardizing efficacy. Here, we investigated whether and how VEGF dose regulates nascent vessel stabilization, to identify novel therapeutic targets. Monoclonal populations of transduced myoblasts were used to homogeneously express specific VEGF doses in SCID mouse muscles. VEGF was abrogated after 10 and 17 days by Aflibercept treatment. Vascular stabilization was fastest with low VEGF, but delayed or prevented by higher doses, without affecting pericyte coverage. Rather, VEGF dose-dependently inhibited endothelial Semaphorin3A expression, thereby impairing recruitment of Neuropilin-1-expressing monocytes (NEM), TGF-ß1 production and endothelial SMAD2/3 activation. TGF-ß1 further initiated a feedback loop stimulating endothelial Semaphorin3A expression, thereby amplifying the stabilizing signals. Blocking experiments showed that NEM recruitment required endogenous Semaphorin3A and that TGF-ß1 was necessary to start the Semaphorin3A/NEM axis. Conversely, Semaphorin3A treatment promoted NEM recruitment and vessel stabilization despite high VEGF doses or transient adenoviral delivery. Therefore, VEGF inhibits the endothelial Semaphorin3A/NEM/TGF-ß1 paracrine axis and Semaphorin3A treatment accelerates stabilization of VEGF-induced angiogenesis.


Subject(s)
Immunophilins/metabolism , Myoblasts , Semaphorin-3A/metabolism , Vascular Endothelial Growth Factor A/metabolism , Angiogenesis Inducing Agents/metabolism , Angiogenesis Inducing Agents/pharmacology , Animals , Mice , Mice, SCID , Myoblasts/metabolism , Myoblasts/physiology , Paracrine Communication , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Transforming Growth Factor beta1/metabolism , Vascular Endothelial Growth Factor A/pharmacology
12.
Article in English | MEDLINE | ID: mdl-25883933

ABSTRACT

Blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular, the spatial localization of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.

14.
Biochem Soc Trans ; 42(6): 1637-42, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25399582

ABSTRACT

Therapeutic angiogenesis is an attractive strategy to treat patients suffering from ischaemic conditions and vascular endothelial growth factor-A (VEGF) is the master regulator of blood vessel growth. However, VEGF can induce either normal or aberrant angiogenesis depending on its dose localized in the microenvironment around each producing cell in vivo and on the balanced stimulation of platelet-derived growth factor-BB (PDGF-BB) signalling, responsible for pericyte recruitment. At the doses required to induce therapeutic benefit, VEGF causes new vascular growth essentially without sprouting, but rather through the alternative process of intussusception, or vascular splitting. In the present article, we briefly review the therapeutic implications of controlling VEGF dose on one hand and pericyte recruitment on the other, as well as the key features of intussusceptive angiogenesis and its regulation.


Subject(s)
Atherosclerosis/therapy , Neovascularization, Physiologic , Proto-Oncogene Proteins c-sis/therapeutic use , Vascular Endothelial Growth Factor A/therapeutic use , Atherosclerosis/drug therapy , Becaplermin , Blood Circulation , Dose-Response Relationship, Drug , Humans
15.
Proc Natl Acad Sci U S A ; 111(19): 6952-7, 2014 May 13.
Article in English | MEDLINE | ID: mdl-24778233

ABSTRACT

Clinical trials of therapeutic angiogenesis by vascular endothelial growth factor (VEGF) gene delivery failed to show efficacy. Major challenges include the need to precisely control in vivo distribution of growth factor dose and duration of expression. Recombinant VEGF protein delivery could overcome these issues, but rapid in vivo clearance prevents the stabilization of induced angiogenesis. Here, we developed an optimized fibrin platform for controlled delivery of recombinant VEGF, to robustly induce normal, stable, and functional angiogenesis. Murine VEGF164 was fused to a sequence derived from α2-plasmin inhibitor (α2-PI1-8) that is a substrate for the coagulation factor fXIIIa, to allow its covalent cross-linking into fibrin hydrogels and release only by enzymatic cleavage. An α2-PI1-8-fused variant of the fibrinolysis inhibitor aprotinin was used to control the hydrogel degradation rate, which determines both the duration and effective dose of factor release. An optimized aprotinin-α2-PI1-8 concentration ensured ideal degradation over 4 wk. Under these conditions, fibrin-α2-PI1-8-VEGF164 allowed exquisitely dose-dependent angiogenesis: concentrations ≥25 µg/mL caused widespread aberrant vascular structures, but a 500-fold concentration range (0.01-5.0 µg/mL) induced exclusively normal, mature, nonleaky, and perfused capillaries, which were stable after 3 mo. Optimized delivery of fibrin-α2-PI1-8-VEGF164 was therapeutically effective both in ischemic hind limb and wound-healing models, significantly improving angiogenesis, tissue perfusion, and healing rate. In conclusion, this optimized platform ensured (i) controlled and highly tunable delivery of VEGF protein in ischemic tissue and (ii) stable and functional angiogenesis without introducing genetic material and with a limited and controllable duration of treatment. These findings suggest a strategy to improve safety and efficacy of therapeutic angiogenesis.


Subject(s)
Fibrin/pharmacokinetics , Gene Transfer Techniques , Ischemia/therapy , Neovascularization, Physiologic/physiology , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/pharmacokinetics , Animals , Female , Gels/pharmacokinetics , Genetic Therapy/methods , Hindlimb , Human Umbilical Vein Endothelial Cells , Humans , Mice , Mice, Inbred Strains , Mice, SCID , Muscle, Skeletal/blood supply , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacokinetics , Vascular Endothelial Growth Factor A/metabolism
16.
Hum Gene Ther Methods ; 24(1): 28-37, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23360398

ABSTRACT

Therapeutic angiogenesis by vascular endothelial growth factor (VEGF) gene delivery is an attractive approach to treat ischemia. VEGF remains localized around each producing cell in vivo, and overexpression of mouse VEGF(164) (mVEGF(164)) induces normal or aberrant angiogenesis, depending strictly on its dose in the microenvironment in vivo. However, the dose-dependent effects of the clinically relevant factor, human VEGF(165) (hVEGF(165)), are unknown. Here we exploited a highly controlled gene delivery platform, based on clonal populations of transduced myoblasts overexpressing specific VEGF levels, to rigorously compare the in vivo dose-dependent effects of hVEGF(165) and mVEGF(164) in skeletal muscle of severe combined immune deficient (SCID) mice. While low levels of both factors efficiently induced similar amounts of normal angiogenesis, only high levels of mVEGF(164) caused widespread angioma-like structures, whereas equivalent or even higher levels of hVEGF(165) induced exclusively normal and mature capillaries. Expression levels were confirmed both in vitro and in vivo by enzyme-linked immunosorbent assay (ELISA) and quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). However, in vitro experiments showed that hVEGF(165) was significantly more effective in activating VEGF receptor signaling in human endothelial cells than mVEGF(164), while the opposite was true in murine endothelial cells. In conclusion, we found that, even though hVEGF is similarly efficient to the syngenic mVEGF in inducing angiogenesis at lower doses in a widely adopted and convenient mouse preclinical model, species-dependent differences in the relative activation of the respective receptors may specifically mask the toxic effects of high doses of the human factor.


Subject(s)
Gene Expression Regulation , Neovascularization, Pathologic/genetics , Vascular Endothelial Growth Factor A/genetics , Animals , Cells, Cultured , Cloning, Molecular , Enzyme-Linked Immunosorbent Assay , Gene Transfer Techniques , Genetic Therapy , Genetic Vectors , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Ischemia/physiopathology , Ischemia/therapy , Kinetics , Mice , Mice, Inbred C57BL , Mice, SCID , Muscle, Skeletal/blood supply , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiopathology , Myoblasts/cytology , Myoblasts/metabolism , Neovascularization, Pathologic/metabolism , Retroviridae/genetics , Sequence Analysis, DNA , Signal Transduction , Species Specificity , Transduction, Genetic , Vascular Endothelial Growth Factor A/metabolism
17.
Angiogenesis ; 16(1): 123-36, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22961440

ABSTRACT

Therapeutic over-expression of vascular endothelial growth factor (VEGF) can be used to treat ischemic conditions. However, VEGF can induce either normal or aberrant angiogenesis depending on its dose in the microenvironment around each producing cell in vivo, which limits its clinical usefulness. The goal herein was to determine the cellular mechanisms by which physiologic and aberrant vessels are induced by over-expression of different VEGF doses in adult skeletal muscle. We took advantage of a well-characterized cell-based platform for controlled gene expression in skeletal muscle. Clonal populations of retrovirally transduced myoblasts were implanted in limb muscles of immunodeficient mice to homogeneously over-express two specific VEGF(164) levels, previously shown to induce physiologic and therapeutic or aberrant angiogenesis, respectively. Three independent and complementary methods (confocal microscopy, vascular casting and 3D-reconstruction of serial semi-thin sections) showed that, at both VEGF doses, angiogenesis took place without sprouting, but rather by intussusception, or vascular splitting. VEGF-induced endothelial proliferation without tip-cell formation caused an initial homogeneous enlargement of pre-existing microvessels, followed by the formation of intravascular transluminal pillars, hallmarks of intussusception. This was associated with increased flow and shear stress, which are potent triggers of intussusception. A similar process of enlargement without sprouting, followed by intussusception, was also induced by VEGF over-expression through a clinically relevant adenoviral gene therapy vector, without the use of transduced cells. Our findings indicate that VEGF over-expression, at doses that have been shown to induce functional benefit, induces vascular growth in skeletal muscle by intussusception rather than sprouting.


Subject(s)
Intussusception/metabolism , Intussusception/pathology , Muscle, Skeletal/blood supply , Muscle, Skeletal/metabolism , Neovascularization, Pathologic/metabolism , Neovascularization, Physiologic , Vascular Endothelial Growth Factor A/metabolism , Adenoviridae/metabolism , Animals , Blood Vessels/pathology , Blood Vessels/physiopathology , Blood Vessels/ultrastructure , Cell Proliferation , Endothelial Cells/metabolism , Endothelial Cells/pathology , Image Processing, Computer-Assisted , Intussusception/complications , Mice , Mice, Inbred C57BL , Muscle, Skeletal/physiopathology , Neovascularization, Pathologic/complications , Neovascularization, Pathologic/pathology , Neovascularization, Pathologic/physiopathology , Regional Blood Flow
18.
FASEB J ; 26(6): 2486-97, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22391130

ABSTRACT

Therapeutic angiogenesis by delivery of vascular growth factors is an attractive strategy for treating debilitating occlusive vascular diseases, yet clinical trials have thus far failed to show efficacy. As a result, limb amputation remains a common outcome for muscle ischemia due to severe atherosclerotic disease, with an overall incidence of 100 per million people in the United States per year. A challenge has been that the angiogenic master regulator vascular endothelial growth factor (VEGF) induces dysfunctional vessels, if expressed outside of a narrow dosage window. We tested the hypothesis that codelivery of platelet-derived growth factor-BB (PDGF-BB), which recruits pericytes, could induce normal angiogenesis in skeletal muscle irrespective of VEGF levels. Coexpression of VEGF and PDGF-BB encoded by separate vectors in different cells or in the same cells only partially corrected aberrant angiogenesis. In marked contrast, coexpression of both factors in every cell at a fixed relative level via a single bicistronic vector led to robust, uniformly normal angiogenesis, even when VEGF expression was high and heterogeneous. Notably, in an ischemic hindlimb model, single-vector expression led to efficient growth of collateral arteries, revascularization, increased blood flow, and reduced tissue damage. Furthermore, these results were confirmed in a clinically applicable gene therapy approach by adenoviral-mediated delivery of the bicistronic vector. We conclude that coordinated expression of VEGF and PDGF-BB via a single vector constitutes a novel strategy for harnessing the potency of VEGF to induce safe and efficacious angiogenesis.


Subject(s)
Neovascularization, Physiologic/physiology , Proto-Oncogene Proteins c-sis/therapeutic use , Vascular Endothelial Growth Factor A/therapeutic use , Adenoviridae/genetics , Animals , Becaplermin , Gene Transfer Techniques , Genetic Therapy/methods , Genetic Vectors , HEK293 Cells , Hindlimb/blood supply , Humans , Male , Mice , Mice, SCID , Muscle, Skeletal/blood supply , Platelet-Derived Growth Factor/therapeutic use , Proto-Oncogene Proteins c-sis/administration & dosage , Vascular Endothelial Growth Factor A/administration & dosage
19.
J Cell Mol Med ; 16(1): 107-17, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21418520

ABSTRACT

We recently developed a method to control the in vivo distribution of vascular endothelial growth factor (VEGF) by high throughput Fluorescence-Activated Cell Sorting (FACS) purification of transduced progenitors such that they homogeneously express specific VEGF levels. Here we investigated the long-term safety of this method in chronic hind limb ischemia in nude rats. Primary myoblasts were transduced to co-express rat VEGF-A(164) (rVEGF) and truncated ratCD8a, the latter serving as a FACS-quantifiable surface marker. Based on the CD8 fluorescence of a reference clonal population, which expressed the desired VEGF level, cells producing similar VEGF levels were sorted from the primary population, which contained cells with very heterogeneous VEGF levels. One week after ischemia induction, 12 × 10(6) cells were implanted in the thigh muscles. Unsorted myoblasts caused angioma-like structures, whereas purified cells only induced normal capillaries that were stable after 3 months. Vessel density was doubled in engrafted areas, but only approximately 0.1% of muscle volume showed cell engraftment, explaining why no increase in total blood flow was observed. In conclusion, the use of FACS-purified myoblasts granted the cell-by-cell control of VEGF expression levels, which ensured long-term safety in a model of chronic ischemia. Based on these results, the total number of implanted cells required to achieve efficacy will need to be determined before a clinical application.


Subject(s)
Cell Separation/methods , Hindlimb/blood supply , Ischemia/physiopathology , Myoblasts/physiology , Neovascularization, Physiologic , Vascular Endothelial Growth Factor A/metabolism , Animals , Biomarkers/metabolism , CD8 Antigens/genetics , CD8 Antigens/metabolism , Cell Transplantation , Cells, Cultured , Humans , Mice , Mice, Inbred C57BL , Mice, SCID , Muscle, Skeletal/blood supply , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Myoblasts/cytology , Myoblasts/transplantation , Rats , Rats, Nude , Vascular Endothelial Growth Factor A/genetics
20.
Biochem Soc Trans ; 39(6): 1644-8, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22103501

ABSTRACT

Therapeutic angiogenesis is an attractive strategy to treat patients suffering from peripheral or coronary artery disease. VEGF (vascular endothelial growth factor-A) is the fundamental factor controlling vascular growth in both development and postnatal life. The interplay between the VEGF and Notch signalling pathway has been recently found to regulate the morphogenic events leading to the growth of new vessels by sprouting. Angiogenesis can also take place by an alternative process, i.e. intussusception or vascular splitting. However, little is known about its role in therapeutic angiogenesis and its molecular regulation. In the present article, we briefly review how VEGF dose determines the induction of normal or aberrant angiogenesis and the molecular regulation of sprouting angiogenesis by Notch signalling, and compare this process with intussusception.


Subject(s)
Blood Vessels/growth & development , Morphogenesis , Receptors, Notch/metabolism , Vascular Endothelial Growth Factor A/metabolism , Animals , Cellular Microenvironment , Humans , Neovascularization, Physiologic
SELECTION OF CITATIONS
SEARCH DETAIL
...