Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Cancers (Basel) ; 15(20)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37894425

ABSTRACT

Chronic lymphocytic leukemia (CLL) is the most frequent leukemia in Western countries. Although characterized by the progressive expansion and accumulation of leukemic B cells in peripheral blood, CLL cells develop in protective niches mainly located within lymph nodes and bone marrow. Multiple interactions between CLL and microenvironmental cells may favor the expansion of a B cell clone, further driving immune cells toward an immunosuppressive phenotype. Here, we summarize the current understanding of bone tissue alterations in CLL patients, further addressing and suggesting how the multiple interactions between CLL cells and osteoblasts/osteoclasts can be involved in these processes. Recent findings proposing the disruption of the endosteal niche by the expansion of a leukemic B cell clone appear to be a novel field of research to be deeply investigated and potentially relevant to provide new therapeutic approaches.

2.
Cancers (Basel) ; 14(23)2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36497460

ABSTRACT

Significant skeletal alterations are present in Chronic Lymphocytic Leukemia (CLL) patients; bone erosion, particularly evident in the long bone shaft, appeared increased in the progressive disease stage. Moreover, the partial colonization of the bone with reactive bone marrow we documented via PET-FDG imaging suggests that neoplastic cell overgrowth contributes to bone derangement. Indeed, cytokines released by leukemic B cells impair osteoblast differentiation and enhance osteoclast formation in vitro. CD16, Fcγ-RIIIa, has been previously indicated as a marker of osteoclast precursors. We demonstrate, here, that the percentage of circulating monocytes, CD16+, is significantly higher in CLL patients than in normal controls and directly correlated with the extent of bone erosion. When we assessed if healthy monocytes, treated with a CLL-conditioned medium, modulated RANK, RANKL and CD16, we observed that all these molecules were up-regulated and CD16 to a greater extent. Altogether, these findings suggest that leukemic cells facilitate osteoclast differentiation. Interestingly, the evidence that monocytes, polarized toward the M2 phenotype, were characterized by high CD16 expression and showed a striking propensity to differentiate toward osteoclasts may provide further explanations for the enhanced levels of bone erosion detected, in agreement with the high number of immunosuppressive-M2 cells present in these patients.

3.
Sensors (Basel) ; 22(4)2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35214418

ABSTRACT

Three-dimensional (3D) culture models have gained relevant interest in tissue engineering and drug discovery owing to their suitability to reproduce in vitro some key aspects of human tissues and to provide predictive information for in vivo tests. In this context, the use of hydrogels as artificial extracellular matrices is of paramount relevance, since they allow closer recapitulation of (patho)physiological features of human tissues. However, most of the analyses aimed at characterizing these models are based on time-consuming and endpoint assays, which can provide only static and limited data on cellular behavior. On the other hand, biosensing systems could be adopted to measure on-line cellular activity, as currently performed in bi-dimensional, i.e., monolayer, cell culture systems; however, their translation and integration within 3D hydrogel-based systems is not straight forward, due to the geometry and materials properties of these advanced cell culturing approaches. Therefore, researchers have adopted different strategies, through the development of biochemical, electrochemical and optical sensors, but challenges still remain in employing these devices. In this review, after examining recent advances in adapting existing biosensors from traditional cell monolayers to polymeric 3D cells cultures, we will focus on novel designs and outcomes of a range of biosensors specifically developed to provide real-time analysis of hydrogel-based cultures.


Subject(s)
Biosensing Techniques , Hydrogels , Cell Culture Techniques/methods , Cells, Cultured , Humans , Hydrogels/chemistry , Tissue Engineering
4.
Materials (Basel) ; 15(2)2022 Jan 08.
Article in English | MEDLINE | ID: mdl-35057189

ABSTRACT

We present a two-step surface modification process to tailor the micro and nano morphology of niobium oxide layers. Niobium was firstly anodized in spark regime in a Ca- and P-containing solution and subsequently treated by acid etching. The effects of anodizing time and applied potential on the surface morphology is investigated with SEM and AFM, complemented by XPS compositional analysis. Anodizing with a limiting potential of 250 V results in the fast growth of oxide layers with a homogeneous distribution of micro-sized pores. Cracks are, however, observed on 250 V grown layers. Limiting the anodizing potential to 200 V slows down the oxide growth, increasing the anodizing time needed to achieve a uniform pore coverage but produces fracture-free oxide layers. The surface nano morphology is further tuned by a subsequent acid etching process that leads to the formation of nano-sized pits on the anodically grown oxide surface. In vitro tests show that the etching-induced nanostructure effectively promotes cell adhesion and spreading onto the niobium oxide surface.

5.
Biomedicines ; 9(9)2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34572381

ABSTRACT

Hypersensitivity pneumonitis (HP) is a diffuse interstitial lung disease (ILD) caused by the inhalation of a variety of antigens in susceptible individuals. Patients with fibrotic HP (fHP) may show histopathological and radiological manifestations similar to patients with idiopathic pulmonary fibrosis (usual interstitial pneumonia-like pattern of fibrosis) that are associated with a worse prognosis. We describe here the establishment and characterization of a fibroblastic cell line derived from the broncho-alveolar lavage (BAL) of a patient with fHP, a 53 year old man who presented at our Pneumology Unit with cough and dyspnea. The fHP diagnosis was based on international criteria and multidisciplinary discussion. Primary fibroblasts were expanded in vitro until passage 36. These fibroblasts displayed morpho/phenotypical features of myofibroblasts, showing high positivity for α-smooth muscle actin, type I collagen, and fibronectin as determined by quantitative RT-PCR and cyto-fluorographic analysis. Cytogenetic analyses further evidenced trisomy of chromosome 10, which interestingly harbors the FGF2R gene. To our knowledge, this is the first fibroblastic cell line derived from an fHP patient and might, therefore, represent a suitable tool to model the disease in vitro. We preliminarily assessed here the activity of pirfenidone, further demonstrating a consistent inhibition of cells growth by this antifibrotic drug.

6.
Cancer Drug Resist ; 4(4): 923-933, 2021.
Article in English | MEDLINE | ID: mdl-35582373

ABSTRACT

Multiple myeloma (MM) accounts for about 10% of hematologic malignancies, and it is the second most frequent hematologic neoplasm after lymphomas. The exact etiology of MM is still unknown and, despite the introduction of more effective and safe drugs in recent years, MM remains an incurable disease. Intrinsic and acquired resistance of malignant B cells to pharmacological treatments still represents an obstacle for survival improvement. Activation of the hepatocyte growth factor/c-MET axis has been reported as involved in MM pathogenesis: hepatocyte growth factor (HGF) levels are in fact higher in sera from MM patients than in healthy controls, the HGF/c-MET pathway may be activated in an autocrine or paracrine manner, and it is interesting to note that a higher c-MET phosphorylation is associated with disease progression. Several studies have further demonstrated the over-activation of c-MET either in resistant cell lines or in primary malignant plasma cells purified from bone marrow of patients resistant to chemotherapy. For this reason, c-MET has been proposed as a potential marker of multidrug resistance in the disease. Here, we first summarize the potential role of HGF/c-MET interaction in disease evolution and then describe novel approaches targeting this axis which could be conceptually utilized, alone or in combination with standard therapies, to treat MM and possibly overcome drug resistance.

7.
Haematologica ; 106(10): 2598-2612, 2021 10 01.
Article in English | MEDLINE | ID: mdl-32855274

ABSTRACT

Bone skeletal alterations are no longer considered a rare event in chronic lymphocytic leukemia (CLL), especially at more advanced stages of the disease. This study is aimed at elucidating the mechanisms underlying this phenomenon. Bone marrow stromal cells, induced to differentiate toward osteoblasts in osteogenic medium, appeared unable to complete their maturation upon co-culture with CLL cells, CLL-cell-derived conditioned media (CLL-cm) or CLL-sera (CLL-sr). Inhibition of osteoblast differentiation was documented by decreased levels of RUNX2 and osteocalcin mRNA expression, by increased osteopontin and DKK-1 mRNA levels, and by a marked reduction of mineralized matrix deposition. The addition of neutralizing TNFα, IL-11 or anti-IL-6R monoclonal antibodies to these cocultures resulted in restoration of bone mineralization, indicating the involvement of these cytokines. These findings were further supported by silencing TNFα, IL-11 and IL-6 in leukemic cells. We also demonstrated that the addition of CLL-cm to monocytes, previously stimulated with MCSF and RANKL, significantly amplified the formation of large, mature osteoclasts as well as their bone resorption activity. Moreover, enhanced osteoclastogenesis, induced by CLL-cm, was significantly reduced by treating cultures with the anti-TNFα monoclonal antibody infliximab. An analogous effect was observed with the use of the BTK inhibitor, ibrutinib. Interestingly, CLL cells co-cultured with mature osteoclasts were protected from apoptosis and upregulated Ki-67. These experimental results parallel the direct correlation between amounts of TNFα in CLL-sr and the degree of compact bone erosion that we previously described, further strengthening the indication of a reciprocal influence between leukemic cell expansion and bone structure derangement.


Subject(s)
Interleukin-11 , Interleukin-6 , Leukemia, Lymphocytic, Chronic, B-Cell , Osteogenesis , Tumor Necrosis Factor-alpha , Cell Differentiation , Cells, Cultured , Cytokines , Humans , Interleukin-11/genetics , Interleukin-6/genetics , Osteoblasts , Osteoclasts , Tumor Necrosis Factor-alpha/genetics
8.
Cytotechnology ; 72(1): 37-45, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31728801

ABSTRACT

Bone marrow derived mesenchymal stromal cells (BMSCs) are multipotent progenitors of particular interest for cell-based tissue engineering therapies. However, one disadvantage that limit their clinical use is their heterogeneity. In the last decades a great effort was made to select BMSC subpopulations based on cell surface markers, however there is still no general consensus on which markers to use to obtain the best BMSCs for tissue regeneration. Looking for alternatives we decided to focus on a probe-based method to detect intracellular mRNA in living cells, the SmartFlare technology. This technology does not require fixation of the cells and allows us to sort living cells based on gene expression into functionally different populations. However, since the technology is available it is debated whether the probes specifically recognize their target mRNAs. We validated the TWIST1 probe and demonstrated that it specifically recognizes TWIST1 in BMSCs. However, differences in probe concentration, incubation time and cellular uptake can strongly influence signal specificity. In addition we found that TWIST1high expressing cells have an increased expansion rate compared to TWIST1low expressing cells derived from the same initial population of BMSCs. The SmartFlare probes recognize their target gene, however for each probe and cell type validation of the protocol is necessary.

9.
Int J Mol Sci ; 20(2)2019 Jan 12.
Article in English | MEDLINE | ID: mdl-30642077

ABSTRACT

Chronic lymphocytic leukemia (CLL) is characterized by the progressive expansion of B lymphocytes CD5+/CD23+ in peripheral blood, lymph-nodes, and bone marrow. The pivotal role played by the microenvironment in disease pathogenesis has become increasingly clear. We demonstrated that bone marrow stromal cells and trabecular bone cells sustain survival of leukemic B cells through the production of hepatocyte growth factor (HGF). Indeed the trans-membrane kinase receptor for HGF, c-MET, is expressed on CLL cells and STAT3 TYR705 or AKT phosphorylation is induced after HGF/c-MET interaction. We have further observed that c-MET is also highly expressed in a peculiar type of cells of the CLL-microenvironment showing nurturing features for the leukemic clone (nurse-like cells: NLCs). Since HGF treatment drives monocytes toward the M2 phenotype and NLCs exhibit features of tumor associated macrophages of type 2 we suggested that HGF, released either by cells of the microenvironment or leukemic cells, exerts a double effect: i) enhances CLL cells survival and ii) drives differentiation of monocytes-macrophages to an oriented immune suppressive phenotype. We here discuss how paracrine, but also autocrine production of HGF by malignant cells, may favor leukemic clone expansion and resistance to conventional drug treatments in CLL, as well as in other hematological malignancies. Novel therapeutic approaches aimed to block HGF/c-MET interactions are further proposed.


Subject(s)
Hepatocyte Growth Factor/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Proto-Oncogene Proteins c-met/metabolism , Autocrine Communication , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Humans , Paracrine Communication , Tumor Microenvironment , Up-Regulation
10.
Mater Sci Eng C Mater Biol Appl ; 93: 1044-1053, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-30274035

ABSTRACT

A novel green method for graphene oxide (GO) reduction via ascorbic acid has been adopted to realize bio-friendly reduced graphene oxide (RGO)/polycaprolactone (PCL) nanofibrous meshes, as substrates for bone tissue engineering applications. PCL fibrous mats enriched with either RGO or GO (0.25 wt%) were fabricated to recapitulate the fibrillar structure of the bone extracellular matrix (ECM) and the effects of RGO incorporation on the structural proprieties, biomechanics and bioactivity of the nano-composites meshes were evaluated. RGO/PCL fibrous meshes displayed superior mechanical properties (i.e. Young's Modulus and ultimate tensile strength) besides supporting noticeably improved cell adhesion, spreading and proliferation of fibroblasts and osteoblast-like cell lines. Furthermore, RGO-based electrospun substrates enhanced in vitro calcium deposition in the ECM produced by osteoblast-like cells, which was paralleled, in human mesenchymal stem cells grown onto the same substrates, by an increased expression of the osteogenic markers mandatory for mineralization. In this respect, the capability of graphene-based materials to adsorb osteogenic factors cooperates synergically with the rougher surface of RGO/PCL-based materials, evidenced by AFM analysis, to ignite mineralization of the neodeposited matrix and to promote the osteogenic commitment of the cultured cell in the surrounding microenvironment.


Subject(s)
Biomimetic Materials/chemistry , Calcification, Physiologic , Cell Differentiation , Fibroblasts/metabolism , Graphite/chemistry , Nanofibers/chemistry , Osteoblasts/metabolism , Osteogenesis , Tissue Engineering , Animals , Bone and Bones/cytology , Bone and Bones/metabolism , Fibroblasts/cytology , Mice , NIH 3T3 Cells , Osteoblasts/cytology , Oxidation-Reduction , Polyesters
11.
Polymers (Basel) ; 10(4)2018 Apr 01.
Article in English | MEDLINE | ID: mdl-30966415

ABSTRACT

One of the current major challenges in orthopedic surgery is the treatment of meniscal lesions. Some of the main issues include mechanical consistency of meniscal implants, besides their fixation methods and integration with the host tissues. To tackle these aspects we realized a micro-porous, gelatin/polyvinyl alcohol (PVA)-based hydrogel to approach the high percentage of water present in the native meniscal tissue, recapitulating its biomechanical features, and, at the same time, realizing a porous implant, permissive to cell infiltration and tissue integration. In particular, we adopted aerodynamically-assisted jetting technology to realize sodium alginate micro-particles with controlled dimensions to be used as porogens. The porous hydrogels were realized through freezing-thawing cycles, followed by alginate particles leaching. Composite hydrogels showed a high porosity (74%) and an open porous structure, while preserving the elasticity behavior (E = 0.25 MPa) and high water content, typical of PVA-based hydrogels. The ex vivo animal model validation proved that the addition of gelatin, combined with the micro-porosity of the hydrogel, enhanced implant integration with the host tissue, allowing penetration of host cells within the construct boundaries. Altogether, these results show that the combined use of a water-insoluble micro-porogen and gelatin, as a bioactive agent, allowed the realization of a porous composite PVA-based hydrogel to be envisaged as a potential meniscal substitute.

12.
Sci Rep ; 7(1): 14159, 2017 10 26.
Article in English | MEDLINE | ID: mdl-29074954

ABSTRACT

Skeletal erosion has been found to represent an independent prognostic indicator in patients with advanced stages of chronic lymphocytic leukaemia (CLL). Whether this phenomenon also occurs in early CLL phases and its underlying mechanisms have yet to be fully elucidated. In this study, we prospectively enrolled 36 consecutive treatment-naïve patients to analyse skeletal structure and bone marrow distribution using a computational approach to PET/CT images. This evaluation was combined with the analysis of RANK/RANKL loop activation in the leukemic clone, given recent reports on its role in CLL progression. Bone erosion was particularly evident in long bone shafts, progressively increased from Binet stage A to Binet stage C, and was correlated with both local expansion of metabolically active bone marrow documented by FDG uptake and with the number of RANKL + cells present in the circulating blood. In immune-deficient NOD/Shi-scid, γcnull (NSG) mice, administration of CLL cells caused an appreciable compact bone erosion that was prevented by Denosumab. CLL cell proliferation in vitro correlated with RANK expression and was impaired by Denosumab-mediated disruption of the RANK/RANKL loop. This study suggests an interaction between CLL cells and stromal elements able to simultaneously impair bone structure and increase proliferating potential of leukemic clone.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Osteoclasts/pathology , RANK Ligand/metabolism , Receptor Activator of Nuclear Factor-kappa B/metabolism , Adult , Aged , Aged, 80 and over , Animals , Bone Density Conservation Agents/pharmacology , Bone Marrow/metabolism , Denosumab/pharmacology , Female , Glucose/metabolism , Humans , Male , Mice, Inbred NOD , Middle Aged , Osteoclasts/metabolism , Positron Emission Tomography Computed Tomography , Prospective Studies , Xenograft Model Antitumor Assays
13.
Mol Neurobiol ; 54(8): 6097-6106, 2017 10.
Article in English | MEDLINE | ID: mdl-27699601

ABSTRACT

Recent advances in life sciences suggest that human and rodent cell responses to stimuli might differ significantly. In this context, the results achieved in neurotoxicology and biomedical research practices using neural networks obtained from mouse or rat primary culture of neurons would benefit of the parallel evaluation of the same parameters using fully differentiated neurons with a human genetic background, thus emphasizing the current need of neuronal cells with human origin. In this work, we developed a human functionally active neural network derived by human neuroblastoma cancer cells genetically engineered to overexpress NDM29, a non-coding RNA whose increased synthesis causes the differentiation toward a neuronal phenotype. These cells are here analyzed accurately showing functional and morphological traits of neurons such as the expression of neuron-specific proteins and the possibility to generate the expected neuronal current traces and action potentials. Their morphometrical analysis is carried out by quantitative phase microscopy showing soma and axon sizes compatible with those of functional neurons. The ability of these cells to connect autonomously forming physical junctions recapitulates that of hippocampal neurons, as resulting by connect-ability test. Lastly, these cells self-organize in neural networks able to produce spontaneous firing, in which spikes can be clustered in bursts. Altogether, these results show that the neural network obtained by NDM29-dependent differentiation of neuroblastoma cells is a suitable tool for biomedical research practices.


Subject(s)
Nerve Net/metabolism , Neurons/metabolism , RNA, Untranslated/metabolism , Action Potentials/physiology , Cell Line, Tumor , Humans , Nerve Net/pathology , Neuroblastoma/metabolism , Neuroblastoma/pathology , Neurons/pathology , RNA, Untranslated/genetics
14.
Biomater Sci ; 4(11): 1691-1703, 2016 Nov 18.
Article in English | MEDLINE | ID: mdl-27709133

ABSTRACT

Three different heterologous substitutes for bone regeneration, manufactured with equine-derived cortical powder (CP), cancellous chips (CC) and demineralized bone matrix granules (DBM), were compared in in vitro and in vivo settings. We tested: a commercially available bone paste (Osteoplant-Activagen™, consisting of aqueous collagenous carrier, CP, DBM; named A); a second-generation injectable paste (20 kDa polyethylene glycol/hydroxypropyl-methyl cellulose-based hydrogel, CP, DBM; B); a pre-formed bone filler (400 kDa polyethylene oxide/hydroxypropyl-methyl cellulose-based hydrogel, CP, CC, DBM; C). Vitamin C acted as a visco-modulator during C and B ß-rays sterilization, modifying graft injectability. For each filler, we examined dissolution in culture medium, gene expression of the substitute-exposed osteogenically-induced human bone marrow stromal cells (hBMSC), and performance in a rabbit bone defect model. A dissolved after 1 h, while fragmentation of B peaked after 8 h. C remained unaltered for 2 days, but affected the microenvironmental pH, slowing the proliferation of exposed cells. B-exposed hBMSC overexpressed bone sialoprotein, osteocalcin and RUNX2. For all fillers histological results evidenced bridged lesion margins, marrow replenishment and bone-remodeling. However, B-treated lesions displayed a metachromatic type II collagen-rich matrix with prehypertrophic-like cells, matching the in vitro expression of cartilage-specific markers, and suggesting a possible application of B/C double-layer monolithic osteochondral plugs for full-thickness articular defects.


Subject(s)
Biocompatible Materials/chemistry , Bone Substitutes/chemistry , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Animals , Bone and Bones/injuries , Cell Line , Humans , Mesenchymal Stem Cells , Rabbits , Rheology
15.
Methods Mol Biol ; 1416: 21-33, 2016.
Article in English | MEDLINE | ID: mdl-27236664

ABSTRACT

Bone is one of the few tissues to display a true potential for regeneration. Fracture healing is an obvious example where regeneration occurs through tightly regulated sequences of molecular and cellular events which recapitulate tissue formation seen during embryogenesis. Still in some instances, bone regeneration does not occur properly (i.e. critical size lesions) and an appropriate therapeutic intervention is necessary. Successful replacement of bone by tissue engineering will likely depend on the recapitulation of this flow of events. In fact, bone regeneration requires cross-talk between microenvironmental factors and cells; for example, resident mesenchymal progenitors are recruited and properly guided by soluble and insoluble signaling molecules. Tissue engineering attempts to reproduce and to mimic this natural milieu by delivering cells capable of differentiating into osteoblasts, inducing growth factors and biomaterials to support cellular attachment, proliferation, migration, and matrix deposition. In the last two decades, a significant effort has been made by the scientific community in the development of methods and protocols to repair and regenerate tissues such as bone, cartilage, tendons, and ligaments. In this same period, great advancements have been achieved in the biology of stem cells and on the mechanisms governing "stemness". Unfortunately, after two decades, effective clinical translation does not exist, besides a few limited examples. Many years have passed since cell-based regenerative therapies were first described as "promising approaches", but this definition still engulfs the present literature. Failure to envisage translational cell therapy applications in routine medical practice evidences the existence of unresolved scientific and technical struggles, some of which still puzzle researchers in the field and are presented in this chapter.


Subject(s)
Bone and Bones/physiology , Tissue Engineering/methods , Bone Regeneration , Cell Differentiation , Humans , Mesenchymal Stem Cells/physiology , Osteoblasts/cytology , Translational Research, Biomedical
16.
J Tissue Eng Regen Med ; 9(10): 1182-92, 2015 Oct.
Article in English | MEDLINE | ID: mdl-23172816

ABSTRACT

Treatment of full-thickness cartilage defects relies on osteochondral bilayer grafts, which mimic the microenvironment and structure of the two affected tissues: articular cartilage and subchondral bone. However, the integrity and stability of the grafts are hampered by the presence of a weak interphase, generated by the layering processes of scaffold manufacturing. We describe here the design and development of a bilayer monolithic osteochondral graft, avoiding delamination of the two distinct layers but preserving the cues for selective generation of cartilage and bone. A highly porous polycaprolactone-based graft was obtained by combining solvent casting/particulate leaching techniques. Pore structure and interconnections were designed to favour in vivo vascularization only at the bony layer. Hydroxyapatite granules were added as bioactive signals at the site of bone regeneration. Unconfined compressive tests displayed optimal elastic properties and low residual deformation of the graft after unloading (< 3%). The structural integrity of the graft was successfully validated by tension fracture tests, revealing high resistance to delamination, since fractures were never displayed at the interface of the layers (n = 8). Ectopic implantation of grafts in nude mice, after seeding with bovine trabecular bone-derived mesenchymal stem cells and bovine articular chondrocytes, resulted in thick areas of mature bone surrounding ceramic granules within the bony layer, and a cartilaginous alcianophilic matrix in the chondral layer. Vascularization was mostly observed in the bony layer, with a statistically significant higher blood vessel density and mean area. Thus, the easily generated osteochondral scaffolds, since they are mechanically and biologically functional, are suitable for tissue-engineering applications for cartilage repair.


Subject(s)
Bone and Bones/physiopathology , Cartilage, Articular/physiopathology , Tissue Engineering , Tissue Scaffolds , Animals , Bone and Bones/pathology , Cartilage, Articular/pathology , Cattle , Mice , Mice, Nude , Microscopy, Electron, Scanning , Porosity , X-Ray Microtomography
17.
Biotechnol Bioeng ; 111(10): 2107-19, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25073412

ABSTRACT

A theoretical model of the 3D scaffold internal architecture has been implemented with the aim to predict the effects of some geometrical parameters on total porosity, Young modulus, buckling resistance and permeability of the graft. This model has been adopted to produce porous poly-caprolacton based grafts for chondral tissue engineering applications, best tuning mechanical and functional features of the scaffolds. Material prototypes were produced with an internal geometry with parallel oriented cylindrical pores of 200 µm of radius (r) and an interpore distance/pores radius (d/r) ratio of 1. The scaffolds have been then extensively characterized; progenitor cells were then used to test their capability to support cartilaginous matrix deposition in an ectopic model. Scaffold prototypes fulfill both the chemical-physical requirements, in terms of Young's modulus and permeability, and the functional needs, such as surface area per volume and total porosity, for an enhanced cellular colonization and matrix deposition. Moreover, the grafts showed interesting chondrogenic potential in vivo, besides offering adequate mechanical performances in vitro, thus becoming a promising candidate for chondral tissues repair. Finally, a very good agreement was found between the prediction of the theoretical model and the experimental data. Many assumption of this theoretical model, hereby applied to cartilage, may be transposed to other tissue engineering applications, such as bone substitutes.


Subject(s)
Biocompatible Materials/chemistry , Cartilage/cytology , Tissue Engineering , Tissue Scaffolds/chemistry , Animals , Cattle , Cells, Cultured , Chondrocytes/cytology , Elastic Modulus , Materials Testing , Mice , Models, Chemical , Porosity , Stem Cells/cytology
18.
Biotechnol Bioeng ; 111(11): 2303-16, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24888215

ABSTRACT

In "situ" tissue engineering is a promising approach in regenerative medicine, envisaging to potentiate the physiological tissue repair processes by recruiting the host's own cellular progenitors at the lesion site by means of bioactive materials. Despite numerous works focused the attention in characterizing novel chemoattractant molecules, only few studied the optimal way to present signal in the microenvironment, in order to recruit cells more effectively. In this work, we have analyzed the effects of gradients of stromal derived factor-1 (SDF-1) on the migratory behavior of human mesenchymal stem cells (MSCs). We have characterized the expression of the chemokine-associated receptor, CXCR4, using cytofluorimetric and real-time PCR analyses. Gradients of SDF-1 were created in 3D collagen gels in a chemotaxis chamber. Migration parameters were evaluated using different chemoattractant concentrations. Our results show that cell motion is strongly affected by the spatio-temporal features of SDF-1 gradients. In particular, we demonstrated that the presence of SDF-1 not only influences cell motility but alters the cell state in terms of SDF-1 receptor expression and productions, thus modifying the way cells perceive the signal itself. Our observations highlight the importance of a correct stimulation of MSCs by means of SDF-1 in order to implement on effective cell recruitment. Our results could be useful for the creation of a "cell instructive material" that is capable to communicate with the cells and control and direct tissue regeneration. Biotechnol. Bioeng. 2014;111: 2303-2316. © 2014 Wiley Periodicals, Inc.


Subject(s)
Cell Movement , Chemokine CXCL12/metabolism , Chemotaxis , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/physiology , Cells, Cultured , Gene Expression Profiling , Humans , Real-Time Polymerase Chain Reaction , Receptors, CXCR4/biosynthesis
19.
Int J Artif Organs ; 37(2): 149-64, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24627169

ABSTRACT

PURPOSE: We assessed in vitro the corrosion behavior and biocompatibility of four Zr-based alloys (Zr97.5 Nb1.5VM1.0  ; VM, valve metal: Ti, Mo, W, Ta; at%) to be used as implant materials, comparing the results with grade-2 titanium, a biocompatible metal standard. METHODS: Corrosion resistance was investigated by open circuit potential and electrochemical impedance spectroscopy measurements as a function of exposure time to an artificial physiological environment (Ringer's solution). Human bone marrow stromal cells were used to evaluate biocompatibility of the alloys and their influence on growth kinetics and cell osteogenic differentiation through histochemical and gene expression analyses. RESULTS: Open circuit potential values indicated that Zr-based alloys and grade-2 Ti undergo spontaneous passivation in the simulated aggressive environment. High impedance values for all samples demonstrated improved corrosion resistance of the oxide film, with the best protection characteristics displayed by Zr97.5  Nb1.5Ta1.0. Cells seeded on all surfaces showed the same growth kinetics, although matrix mineralization and alkaline phosphatase activity were maximal on Zr97.5  Nb1.5Mo1.0 and Zr97.5   Nb1.5Ta1.0. Markers of ongoing proliferation, however, such as podocalyxin and CD49f, were still overexpressed on Zr97.5   Nb1.5   Mo1.0 even upon osteoinduction. No relevant effects were noted for the CD146-expressing population of bone progenitors. Nonetheless, the presence of a more differentiated cell population on Zr97.5Nb1.5Ta1.0 samples was inferable by comparing mineralization data and transcript levels of osteogenic markers (osteocalcin, osteopontin, bone sialoprotein, and RUNX2). CONCLUSIONS: The combination of passivation, corrosion resistance and satisfactory biotolerance to bone progenitors make the Zr-based alloys promising implant materials. Among those we tested, Zr97.5Nb1.5Ta1.0 seems to be the most appealing.


Subject(s)
Alloys , Dental Prosthesis , Orthotic Devices , Titanium , Zirconium , Alloys/chemistry , Alloys/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Corrosion , Dielectric Spectroscopy/methods , Humans , Materials Testing/methods , Mesenchymal Stem Cells/drug effects , Titanium/chemistry , Titanium/pharmacology , Zirconium/chemistry , Zirconium/pharmacology
20.
Haematologica ; 99(6): 1078-87, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24561793

ABSTRACT

Hepatocyte growth factor, produced by stromal and follicular dendritic cells, and present at high concentrations in the sera of patients with chronic lymphocytic leukemia, prolongs the survival of leukemic B cells by interacting with their receptor, c-MET. It is, however, unknown whether hepatocyte growth factor influences microenvironmental cells, such as nurse-like cells, which deliver survival signals to the leukemic clone. We evaluated the expression of c-MET on nurse-like cells and monocytes from patients with chronic lymphocytic leukemia and searched for phenotypic/functional features supposed to be influenced by the hepatocyte growth factor/c-MET interaction. c-MET is expressed at high levels on nurse-like cells and at significantly higher levels than normal on monocytes from patients. Moreover, the hepatocyte growth factor/c-MET interaction activates STAT3(TYR705) phosphorylation in nurse-like cells. Indoleamine 2,3-dioxygenase, an enzyme modulating T-cell proliferation and induced on normal monocytes after hepatocyte growth factor treatment, was detected together with interleukin-10 on nurse-like cells, and on freshly-prepared patients' monocytes. Immunohistochemical/immunostaining analyses demonstrated the presence of c-MET(+) and indoleamine 2,3-dioxygenase(+) cells in lymph node biopsies, co-expressed with CD68 and vimentin. Furthermore nurse-like cells and chronic lymphocytic monocytes significantly inhibited T-cell proliferation, prevented by anti-transforming growth factor beta and interleukin-10 antibodies and indoleamine 2,3-dioxygenase inhibitors, and supported CD4(+)CD25(high+)/FOXP3(+) T regulatory cell expansion. We suggest that nurse-like cells display features of immunosuppressive type 2 macrophages: higher hepatocyte growth factor levels, produced by leukemic or other microenvironmental surrounding cells, may cooperate to induce M2 polarization. Hepatocyte growth factor may thus have a dual pathophysiological role: directly through enhancement of survival of the leukemic clone and indirectly by favoring T-cell immunosuppression.


Subject(s)
Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Macrophages/immunology , Macrophages/metabolism , Proto-Oncogene Proteins c-met/genetics , Cells, Cultured , Coculture Techniques , Gene Expression , Hepatocyte Growth Factor/metabolism , Hepatocyte Growth Factor/pharmacology , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Interleukin-10/genetics , Interleukin-10/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Monocytes/immunology , Monocytes/metabolism , Monocytes/pathology , Phosphorylation/drug effects , Proto-Oncogene Proteins c-met/metabolism , STAT3 Transcription Factor/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...