Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 15(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37835497

ABSTRACT

Cancer is a disease caused by (epi)genomic and gene expression abnormalities and characterized by metabolic phenotypes that are substantially different from the normal phenotypes of the tissues of origin. Metabolic reprogramming is one of the key features of tumors, including those established in the human nervous system. In this work, we emphasize a well-known cancerous genomic alteration: the amplification of MYCN and its downstream effects in neuroblastoma phenotype evolution. Herein, we extend our previous computational biology investigations by conducting an integrative workflow applied to published genomics datasets and comprehensively assess the impact of MYCN amplification in the upregulation of metabolism-related transcription factor (TF)-encoding genes in neuroblastoma cells. The results obtained first emphasized overexpressed TFs, and subsequently those committed in metabolic cellular processes, as validated by gene ontology analyses (GOs) and literature curation. Several genes encoding for those TFs were investigated at the mechanistic and regulatory levels by conducting further omics-based computational biology assessments applied on published ChIP-seq datasets retrieved from MYCN-amplified- and MYCN-enforced-overexpression within in vivo systems of study. Hence, we approached the mechanistic interrelationship between amplified MYCN and overexpression of metabolism-related TFs in neuroblastoma and showed that many are direct targets of MYCN in an amplification-inducible fashion. These results illuminate how MYCN executes its regulatory underpinnings on metabolic processes in neuroblastoma.

2.
J Mol Med (Berl) ; 101(4): 387-401, 2023 04.
Article in English | MEDLINE | ID: mdl-36811655

ABSTRACT

Pediatric high-grade gliomas (pHGGs) are heterogeneous, diffuse, and highly infiltrative tumors with dismal prognosis. Aberrant post-translational histone modifications with elevated histone 3 lysine trimethylation (H3K9me3) have been recently implicated in pHGGs' pathology, conferring to tumor heterogeneity. The present study investigates the potential involvement of H3K9me3 methyltransferase SETDB1 in the cellular function, progression, and clinical significance of pHGG. The bioinformatic analysis detected SETDB1 enrichment in pediatric gliomas compared to the normal brain, as well as positive and negative correlations with a proneural and mesenchymal signature, respectively. In our cohort of pHGGs, SETDB1 expression was significantly increased compared to pLGG and normal brain tissue and correlated with p53 expression, as well as reduced patients' survival. In accordance, H3K9me3 levels were also elevated in pHGG compared to the normal brain and were associated with worse patient survival. Gene silencing of SETDB1 in two patient-derived pHGG cell lines showed a significant reduction in cell viability followed by reduced cell proliferation and increased apoptosis. SETDB1 silencing further reduced cell migration of pHGG cells and the expression of the mesenchymal markers N-cadherin and vimentin. mRNA analysis of epithelial-mesenchymal transition (EMT) markers upon SETDB1 silencing showed a reduction in SNAI1 levels and downregulation of CDH2 along with the EMT regulator gene MARCKS. In addition, SETDB1 silencing significantly increased the bivalent tumor suppressor gene SLC17A7 mRNA levels in both cell lines, indicating its implication in the oncogenic process.Altogether, our findings demonstrate a predominant oncogenic role of SETDB1 in pHGG which along with elevated H3K9me3 levels correlate significantly to tumor progression and inferior patients' survival. There is evidence that targeting SETDB1 may effectively inhibit pHGG progression, providing a novel insight into the therapeutic strategies for pediatric gliomas. KEY MESSAGES: SETDB1 gene expression is enriched in pHGG compared to normal brain. SETDB1 expression is increased in pHGG tissues and associates with reduced patients' survival. Gene silencing of SETDB1 reduces cell viability and migration. SETDB1 silencing affects mesenchymal markers expression. SETDB1 silencing upregulates SLC17A7 levels. SETDB1 has an oncogenic role in pHGG.


Subject(s)
Glioma , Histones , Humans , Child , Histones/metabolism , Histone Methyltransferases/metabolism , Glioma/genetics , Cell Line , RNA, Messenger , Histone-Lysine N-Methyltransferase/metabolism
3.
Biochim Biophys Acta Rev Cancer ; 1877(5): 188801, 2022 09.
Article in English | MEDLINE | ID: mdl-36113627

ABSTRACT

Pioneer transcription factors (TFs) present an important subtype of transcription factors which are vital for cell programming during embryonic development and cellular memory during mitotic growth, as well as cell fate reprogramming. Pioneer TFs can engage specific target binding sites on nucleosomal DNA to attract chromatin remodeling complexes, cofactors, and other transcription factors, ultimately controlling gene expression by shaping locally the epigenome. The priority of binding that they exhibit in contrast to other transcription factors and their involvement in crucial events regarding cell fate, has implicated their aberrant function in the pathogenesis of several disorders including carcinogenesis. Emerging experimental data indicate that certain Pioneer TFs are highly implicated in gliomas development, in neoplastic cell proliferation, angiogenic processes, resistance to therapy, and patient survival. Herein, we describe the main structural characteristics and functional mechanisms of pioneer TFs, focusing on their central role in the pathogenesis and progression of gliomas. We further highlight the current treatment options ranging from natural agents (oleanolic acid) to a variety of chemical compounds (APR-246, COTI-2) and discuss potential delivery systems, including nanoparticles, viral vectors, and intracellular protein delivery techniques.


Subject(s)
Glioma , Oleanolic Acid , Chromatin , DNA , Glioma/drug therapy , Glioma/genetics , Humans , Transcription Factors/genetics , Transcription Factors/metabolism
4.
Cancers (Basel) ; 14(18)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36139535

ABSTRACT

Non-coding segments of the human genome are enriched in cis-regulatory modules that constitute functional elements, such as transcriptional enhancers and Super-enhancers. A hallmark of cancer pathogenesis is the dramatic dysregulation of the "archetype" gene expression profiles of normal human cells. Genomic variations can promote such deficiencies when occurring across enhancers and Super-enhancers, since they affect their mechanistic principles, their functional capacity and specificity, and the epigenomic features of the chromatin microenvironment across which these regulatory elements reside. Here, we comprehensively describe: fundamental mechanisms of gene expression dysregulation in cancers that involve genomic abnormalities within enhancers' and Super-enhancers' (SEs) sequences, which alter the expression of oncogenic transcription factors (TFs); cutting-edge technologies applied for the analysis of variation-enriched hotspots of the cancer genome; and pharmacological approaches for the treatment of Super-enhancers' aberrant function. Finally, we provide an intratumor meta-analysis, which highlights that genomic variations in transcription-factor-driven tumors are accompanied overexpression of genes, a portion of which encodes for additional cancer-related transcription factors.

5.
Cancers (Basel) ; 14(18)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36139694

ABSTRACT

Gliomas encompass a vast category of CNS tumors affecting both adults and children. Treatment and diagnosis are often impeded due to intratumor heterogeneity and the aggressive nature of the more malignant forms. It is therefore essential to elucidate the molecular mechanisms and explore the intracellular signaling pathways underlying tumor pathology to provide more promising diagnostic, prognostic, and therapeutic tools for gliomas. The tripartite motif-containing (TRIM) superfamily of proteins plays a key role in many physiological cellular processes, including brain development and function. Emerging evidence supports the association of TRIMs with a wide variety of cancers, exhibiting both an oncogenic as well as a tumor suppressive role depending on cancer type. In this review, we provide evidence of the pivotal role of TRIM proteins in gliomagenesis and exploit their potential as prognostic biomarkers and therapeutic targets.

6.
Int J Mol Sci ; 23(7)2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35409080

ABSTRACT

Gliomas portray a large and heterogeneous group of CNS tumors, encompassing a wide range of low- to high-grade tumors, as defined by histological and molecular characteristics. The identification of signature mutations and other molecular abnormalities has largely impacted tumor classification, diagnosis, and therapy. Transcription factors (TFs) are master regulators of gene expression programs, which ultimately shape cell fate and homeostasis. A variety of TFs have been detected to be aberrantly expressed in brain tumors, being highly implicated in critical pathological aspects and progression of gliomas. Herein, we describe a selection of oncogenic (GLI-1/2/3, E2F1-8, STAT3, and HIF-1/2) and tumor suppressor (NFI-A/B, TBXT, MYT1, and MYT1L) TFs that are deregulated in gliomas and are subsequently associated with tumor development, progression, and migratory potential. We further discuss the current targeting options against these TFs, including chemical (Bortezomib) and natural (Plumbagin) compounds, small molecules, and inhibitors, and address their potential implications in glioma therapy.


Subject(s)
Brain Neoplasms , Glioma , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Genes, Tumor Suppressor , Glioma/drug therapy , Glioma/genetics , Glioma/metabolism , Humans , Mutation , Oncogenes
SELECTION OF CITATIONS
SEARCH DETAIL
...