Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(2)2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38276439

ABSTRACT

Magnesium alloys play an essential role in metallic lightweight construction for modern mobility applications due to their low density, excellent specific strength, and very good castability. For some years now, degradable implants have also been made from magnesium alloys, which, thanks to this special functionality, save patients a second surgery for explantation. New additive manufacturing processes, which are divided into powder-based and wire-based processes depending on the feedstock used, can be utilized for these applications. Therefore, magnesium alloys should also be used here, but this is hardly ever implemented, and few literature reports exist on this subject. This is attributable to the high affinity of magnesium to oxygen, which makes the use of powders difficult. Therefore, magnesium wires are likely to be used. In this paper, a magnesium-based nanocomposite wire is made from an AM60 (Mg-6Al-0.4Mn) (reinforced with 1 wt% AlN nanoparticles and containing calcium to reduce flammability), using a high-shear process and then extruded into wires. These wires are then used as feedstock to build up samples by wire-arc directed energy deposition, and their mechanical properties and microstructure are examined. Our results show that although the ductility is reduced by adding calcium and nanoparticles, the yield strength in the welding direction and perpendicular to it is increased to 131 MPa.

2.
Nanomaterials (Basel) ; 12(15)2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35957113

ABSTRACT

Metal matrix nanocomposites are attracting attention because of their great potential for improved mechanical properties and possible functionalization. These hybrid materials are often produced by casting processes, but they can also develop their property profile after hot working, e.g., by forging or extrusion. In this study, a commercial cast magnesium alloy AM60 was enriched with 1 wt.% AlN nanoparticles and extruded into round bars with varied extrusion rates. The same process was carried out with unreinforced AM60 in order to determine the influences of the AlN nanoparticles in direct comparison. The influence of extrusion speed on the recrystallization behavior as well the effect of nanoparticles on the microstructure evolution and the particle-related strengthening are discussed and assessed with respect to the resulting mechanical performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...