Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
J Cell Mol Med ; 28(9): e18344, 2024 May.
Article in English | MEDLINE | ID: mdl-38685679

ABSTRACT

Single cell RNA sequencing of human full thickness Crohn's disease (CD) small bowel resection specimens was used to identify potential therapeutic targets for stricturing (S) CD. Using an unbiased approach, 16 cell lineages were assigned within 14,539 sequenced cells from patient-matched SCD and non-stricturing (NSCD) preparations. SCD and NSCD contained identical cell types. Amongst immune cells, B cells and plasma cells were selectively increased in SCD samples. B cell subsets suggested formation of tertiary lymphoid tissue in SCD and compared with NSCD there was an increase in IgG, and a decrease in IgA plasma cells, consistent with their potential role in CD fibrosis. Two Lumican-positive fibroblast subtypes were identified and subclassified based on expression of selectively enriched genes as fibroblast clusters (C) 12 and C9. Cells within these clusters expressed the profibrotic genes Decorin (C12) and JUN (C9). C9 cells expressed ACTA2; ECM genes COL4A1, COL4A2, COL15A1, COL6A3, COL18A1 and ADAMDEC1; LAMB1 and GREM1. GO and KEGG Biological terms showed extracellular matrix and stricture organization associated with C12 and C9, and regulation of WNT pathway genes with C9. Trajectory and differential gene analysis of C12 and C9 identified four sub-clusters. Intra sub-cluster gene analysis detected 13 co-regulated gene modules that aligned along predicted pseudotime trajectories. CXCL14 and ADAMDEC1 were key markers in module 1. Our findings support further investigation of fibroblast heterogeneity and interactions with local and circulating immune cells at earlier time points in fibrosis progression. Breaking these interactions by targeting one or other population may improve therapeutic management for SCD.


Subject(s)
B-Lymphocytes , Crohn Disease , Fibroblasts , Single-Cell Analysis , Humans , Crohn Disease/genetics , Crohn Disease/pathology , Crohn Disease/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Single-Cell Analysis/methods , B-Lymphocytes/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Male , Female , Adult , Gene Expression Profiling
2.
HGG Adv ; 5(2): 100262, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38192100

ABSTRACT

Widespread adoption of DNA sequencing has resulted in large numbers of genetic variants, whose contribution to disease is not easily determined. Although many types of variation are known to disrupt cellular processes in predictable ways, for some categories of variants, the effects may not be directly detectable. A particular example is synonymous variants, that is, those single-nucleotide variants that create a codon substitution, such that the produced amino acid sequence is unaffected. Contrary to the original theory suggesting that synonymous variants are benign, there is a growing volume of research showing that, despite their "silent" mechanism of action, some synonymous variation may be deleterious. Here, we studied the extent of the negative selective pressure acting on different classes of synonymous variants by analyzing the relative enrichment of synonymous singleton variants in the human exomes provided by gnomAD. Using a modification of the mutability-adjusted proportion of singletons (MAPS) metric as a measure of purifying selection, we found that some classes of synonymous variants are subject to stronger negative selection than others. For instance, variants that reduce codon optimality undergo stronger selection than optimality-increasing variants. Besides, selection affects synonymous variants implicated in splice-site-loss or splice-site-gain events. To understand what drives this negative selection, we tested a number of predictors in the aim to explain the variability in the selection scores. Our findings provide insights into the effects of synonymous variants at the population level, highlighting the specifics of the role that these variants play in health and disease.


Subject(s)
Silent Mutation , Humans , Base Sequence , Codon/genetics , Amino Acid Sequence , Sequence Analysis, DNA
3.
JAMA Cardiol ; 9(3): 254-261, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38265806

ABSTRACT

Importance: Spontaneous coronary artery dissection (SCAD) is a poorly understood cause of acute coronary syndrome that predominantly affects women. Evidence to date suggests a complex genetic architecture, while a family history is reported for a minority of cases. Objective: To determine the contribution of rare and common genetic variants to SCAD risk in familial cases, the latter via the comparison of a polygenic risk score (PRS) with those with sporadic SCAD and healthy controls. Design, Setting, and Participants: This genetic association study analyzed families with SCAD, individuals with sporadic SCAD, and healthy controls. Genotyping was undertaken for all participants. Participants were recruited between 2017 and 2021. A PRS for SCAD was calculated for all participants. The presence of rare variants in genes associated with connective tissue disorders (CTD) was also assessed. Individuals with SCAD were recruited via social media or from a single medical center. A previously published control database of older healthy individuals was used. Data were analyzed from January 2022 to October 2023. Exposures: PRS for SCAD comprised of 7 single-nucleotide variants. Main Outcomes and Measures: Disease status (familial SCAD, sporadic SCAD, or healthy control) associated with PRS. Results: A total of 13 families with SCAD (27 affected and 12 unaffected individuals), 173 individuals with sporadic SCAD, and 1127 healthy controls were included. A total of 188 individuals with SCAD (94.0%) were female, including 25 of 27 with familial SCAD and 163 of 173 with sporadic SCAD; of 12 unaffected individuals from families with SCAD, 6 (50%) were female; and of 1127 healthy controls, 672 (59.6%) were female. Compared with healthy controls, the odds of being an affected family member or having sporadic SCAD was significantly associated with a SCAD PRS (where the odds ratio [OR] represents an increase in odds per 1-SD increase in PRS) (affected family member: OR, 2.14; 95% CI, 1.78-2.50; adjusted P = 1.96 × 10-4; sporadic SCAD: OR, 1.63; 95% CI, 1.37-1.89; adjusted P = 5.69 × 10-4). This association was not seen for unaffected family members (OR, 1.03; 95% CI, 0.46-1.61; adjusted P = .91) compared with controls. Further, those with familial SCAD were overrepresented in the top quintile of the control PRS distribution (OR, 3.70; 95% CI, 2.93-4.47; adjusted P = .001); those with sporadic SCAD showed a similar pattern (OR, 2.51; 95% CI, 1.98-3.04; adjusted P = .001). Affected individuals within a family did not share any rare deleterious variants in CTD-associated genes. Conclusions and Relevance: Extreme aggregation of common genetic risk appears to play a significant role in familial clustering of SCAD as well as in sporadic case predisposition, although further study is required.


Subject(s)
Coronary Vessel Anomalies , Coronary Vessels , Vascular Diseases , Vascular Diseases/congenital , Humans , Female , Male , Vascular Diseases/genetics , Risk Factors , Genotype , Genetic Risk Score
4.
Circulation ; 149(18): 1405-1415, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38109351

ABSTRACT

BACKGROUND: Exercise-induced cardiac remodeling can be profound, resulting in clinical overlap with dilated cardiomyopathy, yet the significance of reduced ejection fraction (EF) in athletes is unclear. The aim is to assess the prevalence, clinical consequences, and genetic predisposition of reduced EF in athletes. METHODS: Young endurance athletes were recruited from elite training programs and underwent comprehensive cardiac phenotyping and genetic testing. Those with reduced EF using cardiac magnetic resonance imaging (defined as left ventricular EF <50%, or right ventricular EF <45%, or both) were compared with athletes with normal EF. A validated polygenic risk score for indexed left ventricular end-systolic volume (LVESVi-PRS), previously associated with dilated cardiomyopathy, was assessed. Clinical events were recorded over a mean of 4.4 years. RESULTS: Of the 281 elite endurance athletes (22±8 years, 79.7% male) undergoing comprehensive assessment, 44 of 281 (15.7%) had reduced left ventricular EF (N=12; 4.3%), right ventricular EF (N=14; 5.0%), or both (N=18; 6.4%). Reduced EF was associated with a higher burden of ventricular premature beats (13.6% versus 3.8% with >100 ventricular premature beats/24 h; P=0.008) and lower left ventricular global longitudinal strain (-17%±2% versus -19%±2%; P<0.001). Athletes with reduced EF had a higher mean LVESVi-PRS (0.57±0.13 versus 0.51±0.14; P=0.009) with athletes in the top decile of LVESVi-PRS having an 11-fold increase in the likelihood of reduced EF compared with those in the bottom decile (P=0.034). Male sex and higher LVESVi-PRS were the only significant predictors of reduced EF in a multivariate analysis that included age and fitness. During follow-up, no athletes developed symptomatic heart failure or arrhythmias. Two athletes died, 1 from trauma and 1 from sudden cardiac death, the latter having a reduced right ventricular EF and a LVESVi-PRS >95%. CONCLUSIONS: Reduced EF occurs in approximately 1 in 6 elite endurance athletes and is related to genetic predisposition in addition to exercise training. Genetic and imaging markers may help identify endurance athletes in whom scrutiny about long-term clinical outcomes may be appropriate. REGISTRATION: URL: https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=374976&isReview=true; Unique identifier: ACTRN12618000716268.


Subject(s)
Athletes , Cardiomyopathy, Dilated , Stroke Volume , Humans , Male , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/physiopathology , Cardiomyopathy, Dilated/diagnostic imaging , Female , Adult , Young Adult , Physical Endurance/genetics , Adolescent , Genetic Predisposition to Disease , Ventricular Remodeling , Ventricular Function, Left
5.
J Crohns Colitis ; 2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38069679

ABSTRACT

BACKGROUND & AIMS: No effective therapeutic intervention exists for intestinal fibrosis in Crohn's disease [CD]. We characterised fibroblast subtypes, epigenetic and metabolic changes, and signalling pathways in CD fibrosis to inform future therapeutic strategies. METHODS: We undertook immunohistochemistry, metabolic, signalling pathway and Epigenetic [Transposase-Accessible Chromatin using sequencing] analyses associated with collagen production in CCD-18Co intestinal fibroblasts and primary fibroblasts isolated from stricturing [SCD] and non-stricturing [NSCD] CD small intestine. SCD/ NSCD fibroblasts were cultured with TGFß and valproic acid [VPA]. RESULTS: Stricturing CD was characterised by distinct histone deacetylase [HDAC] expression profiles, particularly HDAC1, HDAC2, and HDAC7. As a proxy for HDAC activity, reduced numbers of H3K27ac+ cells were found in SCD compared to NSCD sections. Primary fibroblasts had increased extracellular lactate [increased glycolytic activity] and intracellular hydroxyproline [increased collagen production] in SCD compared to NSCD cultures. The metabolic effect of TGFß-stimulation was reversed by the HDAC inhibitor VPA. SCD fibroblasts appear "metabolically primed" and responded more strongly to both TGFß and VPA. Treatment with VPA revealed TGFß-dependent and independent Collagen-I production in CCD-18Co cells and primary fibroblasts. VPA altered the epigenetic landscape with reduced chromatin accessibility at the COL1A1 and COL1A2 promoters. CONCLUSIONS: Increased HDAC expression profiles, H3K27ac hypoacetylation, a significant glycolytic phenotype, and metabolic priming, characterise SCD-derived as compared to NSCD fibroblasts. Our results reveal a novel epigenetic component to Collagen-I regulation and TGFß-mediated CD fibrosis. HDAC inhibitor therapy may 'reset' the epigenetic changes associated with fibrosis.

6.
Circ Genom Precis Med ; 16(5): 421-430, 2023 10.
Article in English | MEDLINE | ID: mdl-37671549

ABSTRACT

BACKGROUND: Variants in the DMD gene, that encodes the cytoskeletal protein, dystrophin, cause a severe form of dilated cardiomyopathy (DCM) associated with high rates of heart failure, heart transplantation, and ventricular arrhythmias. Improved early detection of individuals at risk is needed. METHODS: Genetic testing of 40 male probands with a potential X-linked genetic cause of primary DCM was undertaken using multi-gene panel sequencing, multiplex polymerase chain reaction, and array comparative genomic hybridization. Variant location was assessed with respect to dystrophin isoform patterns and exon usage. Telomere length was evaluated as a marker of myocardial dysfunction in left ventricular tissue and blood. RESULTS: Four pathogenic/likely pathogenic DMD variants were found in 5 probands (5/40: 12.5%). Only one rare variant was identified by gene panel testing with 3 additional multi-exon deletion/duplications found following targeted assays for structural variants. All of the pathogenic/likely pathogenic DMD variants involved dystrophin exons that had percent spliced-in scores >90, indicating high levels of constitutive expression in the human adult heart. Fifteen DMD variant-negative probands (15/40: 37.5%) had variants in autosomal genes including TTN, BAG3, LMNA, and RBM20. Myocardial telomere length was reduced in patients with DCM irrespective of genotype. No differences in blood telomere length were observed between genotype-positive family members with/without DCM and controls. CONCLUSIONS: Primary genetic testing using multi-gene panels has a low yield and specific assays for structural variants are required if DMD-associated cardiomyopathy is suspected. Distinguishing X-linked causes of DCM from autosomal genes that show sex differences in clinical presentation is crucial for informed family management.


Subject(s)
Adaptor Proteins, Signal Transducing , Dystrophin , Adult , Humans , Male , Female , Dystrophin/genetics , Comparative Genomic Hybridization , Pedigree , Genotype , Phenotype , Adaptor Proteins, Signal Transducing/genetics , Apoptosis Regulatory Proteins/genetics
7.
Nat Genet ; 55(6): 964-972, 2023 06.
Article in English | MEDLINE | ID: mdl-37248441

ABSTRACT

Spontaneous coronary artery dissection (SCAD) is an understudied cause of myocardial infarction primarily affecting women. It is not known to what extent SCAD is genetically distinct from other cardiovascular diseases, including atherosclerotic coronary artery disease (CAD). Here we present a genome-wide association meta-analysis (1,917 cases and 9,292 controls) identifying 16 risk loci for SCAD. Integrative functional annotations prioritized genes that are likely to be regulated in vascular smooth muscle cells and artery fibroblasts and implicated in extracellular matrix biology. One locus containing the tissue factor gene F3, which is involved in blood coagulation cascade initiation, appears to be specific for SCAD risk. Several associated variants have diametrically opposite associations with CAD, suggesting that shared biological processes contribute to both diseases, but through different mechanisms. We also infer a causal role for high blood pressure in SCAD. Our findings provide novel pathophysiological insights involving arterial integrity and tissue-mediated coagulation in SCAD and set the stage for future specific therapeutics and preventions.


Subject(s)
Coronary Artery Disease , Myocardial Infarction , Vascular Diseases , Humans , Female , Genome-Wide Association Study , Vascular Diseases/genetics , Coronary Artery Disease/genetics
8.
Nat Commun ; 14(1): 853, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36792598

ABSTRACT

Following the diagnosis of a paediatric disorder caused by an apparently de novo mutation, a recurrence risk of 1-2% is frequently quoted due to the possibility of parental germline mosaicism; but for any specific couple, this figure is usually incorrect. We present a systematic approach to providing individualized recurrence risk. By combining locus-specific sequencing of multiple tissues to detect occult mosaicism with long-read sequencing to determine the parent-of-origin of the mutation, we show that we can stratify the majority of couples into one of seven discrete categories associated with substantially different risks to future offspring. Among 58 families with a single affected offspring (representing 59 de novo mutations in 49 genes), the recurrence risk for 35 (59%) was decreased below 0.1%, but increased owing to parental mixed mosaicism for 5 (9%)-that could be quantified in semen for paternal cases (recurrence risks of 5.6-12.1%). Implementation of this strategy offers the prospect of driving a major transformation in the practice of genetic counselling.


Subject(s)
Fathers , Parturition , Male , Pregnancy , Female , Humans , Child , Mutation , Risk Assessment , Germ Cells , Mosaicism , Pedigree , Germ-Line Mutation
9.
BMC Bioinformatics ; 24(1): 49, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36792982

ABSTRACT

BACKGROUND: A wide range of tools are available for the detection of copy number variants (CNVs) from whole-genome sequencing (WGS) data. However, none of them focus on clinically-relevant CNVs, such as those that are associated with known genetic syndromes. Such variants are often large in size, typically 1-5 Mb, but currently available CNV callers have been developed and benchmarked for the discovery of smaller variants. Thus, the ability of these programs to detect tens of real syndromic CNVs remains largely unknown. RESULTS: Here we present ConanVarvar, a tool which implements a complete workflow for the targeted analysis of large germline CNVs from WGS data. ConanVarvar comes with an intuitive R Shiny graphical user interface and annotates identified variants with information about 56 associated syndromic conditions. We benchmarked ConanVarvar and four other programs on a dataset containing real and simulated syndromic CNVs larger than 1 Mb. In comparison to other tools, ConanVarvar reports 10-30 times less false-positive variants without compromising sensitivity and is quicker to run, especially on large batches of samples. CONCLUSIONS: ConanVarvar is a useful instrument for primary analysis in disease sequencing studies, where large CNVs could be the cause of disease.


Subject(s)
DNA Copy Number Variations , Germ Cells , Whole Genome Sequencing , Workflow , High-Throughput Nucleotide Sequencing
11.
Science ; 379(6629): 253-260, 2023 01 20.
Article in English | MEDLINE | ID: mdl-36656928

ABSTRACT

Cancer genetics has to date focused on epithelial malignancies, identifying multiple histotype-specific pathways underlying cancer susceptibility. Sarcomas are rare malignancies predominantly derived from embryonic mesoderm. To identify pathways specific to mesenchymal cancers, we performed whole-genome germline sequencing on 1644 sporadic cases and 3205 matched healthy elderly controls. Using an extreme phenotype design, a combined rare-variant burden and ontologic analysis identified two sarcoma-specific pathways involved in mitotic and telomere functions. Variants in centrosome genes are linked to malignant peripheral nerve sheath and gastrointestinal stromal tumors, whereas heritable defects in the shelterin complex link susceptibility to sarcoma, melanoma, and thyroid cancers. These studies indicate a specific role for heritable defects in mitotic and telomere biology in risk of sarcomas.


Subject(s)
Genetic Predisposition to Disease , Germ-Line Mutation , Mitosis , Sarcoma , Telomere , Humans , Genetic Variation , Germ Cells , Melanoma/genetics , Mitosis/genetics , Sarcoma/genetics , Shelterin Complex/genetics , Telomere/genetics
12.
Front Cardiovasc Med ; 9: 1055862, 2022.
Article in English | MEDLINE | ID: mdl-36561772

ABSTRACT

Arterial dissections, which involve an abrupt tear in the wall of a major artery resulting in the intramural accumulation of blood, are a family of catastrophic disorders causing major, potentially fatal sequelae. Involving diverse vascular beds, including the aorta or coronary, cervical, pulmonary, and visceral arteries, each type of dissection is devastating in its own way. Traditionally they have been studied in isolation, rather than collectively, owing largely to the distinct clinical consequences of dissections in different anatomical locations - such as stroke, myocardial infarction, and renal failure. Here, we review the shared and unique features of these arteriopathies to provide a better understanding of this family of disorders. Arterial dissections occur commonly in the young to middle-aged, and often in conjunction with hypertension and/or migraine; the latter suggesting they are part of a generalized vasculopathy. Genetic studies as well as cellular and molecular investigations of arterial dissections reveal striking similarities between dissection types, particularly their pathophysiology, which includes the presence or absence of an intimal tear and vasa vasorum dysfunction as a cause of intramural hemorrhage. Pathway perturbations common to all types of dissections include disruption of TGF-ß signaling, the extracellular matrix, the cytoskeleton or metabolism, as evidenced by the finding of mutations in critical genes regulating these processes, including LRP1, collagen genes, fibrillin and TGF-ß receptors, or their coupled pathways. Perturbances in these connected signaling pathways contribute to phenotype switching in endothelial and vascular smooth muscle cells of the affected artery, in which their physiological quiescent state is lost and replaced by a proliferative activated phenotype. Of interest, dissections in various anatomical locations are associated with distinct sex and age predilections, suggesting involvement of gene and environment interactions in disease pathogenesis. Importantly, these cellular mechanisms are potentially therapeutically targetable. Consideration of arterial dissections as a collective pathology allows insight from the better characterized dissection types, such as that involving the thoracic aorta, to be leveraged to inform the less common forms of dissections, including the potential to apply known therapeutic interventions already clinically available for the former.

13.
Sci Adv ; 8(47): eabq2492, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36417540

ABSTRACT

Determining which cellular processes facilitate adaptation requires a tractable experimental model where an environmental cue can generate variants that rescue function. The bacterial flagellar motor (BFM) is an excellent candidate-an ancient and highly conserved molecular complex for bacterial propulsion toward favorable environments. Motor rotation is often powered by H+ or Na+ ion transit through the torque-generating stator subunit of the motor complex, and ion selectivity has adapted over evolutionary time scales. Here, we used CRISPR engineering to replace the native Escherichia coli H+-powered stator with Na+-powered stator genes and report the spontaneous reversion of our edit in a low-sodium environment. We followed the evolution of the stators during their reversion to H+-powered motility and used both whole-genome and RNA sequencing to identify genes involved in the cell's adaptation. Our transplant of an unfit protein and the cells' rapid response to this edit demonstrate the adaptability of the stator subunit and highlight the hierarchical modularity of the flagellar motor.


Subject(s)
Escherichia coli , Flagella , Escherichia coli/genetics , Escherichia coli/metabolism , Flagella/metabolism , Molecular Motor Proteins/metabolism , Sodium/metabolism , Torque , Ions/metabolism
14.
Am Heart J ; 254: 166-171, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36115390

ABSTRACT

Congenital heart disease (CHD) has a multifactorial aetiology, raising the possibility of an underlying genetic burden, predisposing to disease but also variable expression, including variation in disease severity, and incomplete penetrance. Using whole genome sequencing (WGS), the findings of this study, indicate that complex, critical CHD is distinct from other types of disease due to increased genetic burden in common variation, specifically among established CHD genes. Additionally, these findings highlight associations with regulatory genes and environmental "stressors" in the final presentation of disease.


Subject(s)
Heart Defects, Congenital , Humans , Heart Defects, Congenital/genetics
15.
Front Immunol ; 13: 884530, 2022.
Article in English | MEDLINE | ID: mdl-35784319

ABSTRACT

Candida albicans (C. albicans) infection is a potential complication in the individuals with atopic dermatitis (AD) and can affect clinical course of the disease. Here, using primary keratinocytes we determined that atopic milieu promotes changes in the interaction of small extracellular vesicles (sEVs) with dendritic cells and that this is further enhanced by the presence of C. albicans. sEV uptake is largely dependent on the expression of glycans on their surface; modelling of the protein interactions indicated that recognition of this pathogen through C. albicans-relevant pattern recognition receptors (PRRs) is linked to several glycosylation enzymes which may in turn affect the expression of sEV glycans. Here, significant changes in the surface glycosylation pattern, as determined by lectin array, could be observed in sEVs upon a combined exposure of keratinocytes to AD cytokines and C. albicans. This included enhanced expression of multiple types of glycans, for which several dendritic cell receptors could be proposed as binding partners. Blocking experiments showed predominant involvement of the inhibitory Siglec-7 and -9 receptors in the sEV-cell interaction and the engagement of sialic acid-containing carbohydrate moieties on the surface of sEVs. This pointed on ST6 ß-Galactoside α-2,6-Sialyltransferase 1 (ST6GAL1) and Core 1 ß,3-Galactosyltransferase 1 (C1GALT1) as potential enzymes involved in the process of remodelling of the sEV surface glycans upon C. albicans exposure. Our results suggest that, in combination with atopic dermatitis milieu, C. albicans promotes alterations in the glycosylation pattern of keratinocyte-derived sEVs to interact with inhibitory Siglecs on antigen presenting cells. Hence, a strategy aiming at this pathway to enhance antifungal responses and restrict pathogen spread could offer novel therapeutic options for skin candidiasis in AD.


Subject(s)
Candidiasis , Dermatitis, Atopic , Extracellular Vesicles , Candida albicans , Glycosylation , Humans , Keratinocytes , Sialic Acid Binding Immunoglobulin-like Lectins
16.
Circ Genom Precis Med ; 15(4): e003527, 2022 08.
Article in English | MEDLINE | ID: mdl-35583931

ABSTRACT

BACKGROUND: Spontaneous coronary artery dissection (SCAD) is a cause of acute coronary syndrome that predominantly affects women. Its pathophysiology remains unclear but connective tissue disorders (CTD) and other vasculopathies have been observed in many SCAD patients. A genetic component for SCAD is increasingly appreciated, although few genes have been robustly implicated. We sought to clarify the genetic cause of SCAD using targeted and genome-wide methods in a cohort of sporadic cases to identify both common and rare disease-associated variants. METHODS: A cohort of 91 unrelated sporadic SCAD cases was investigated for rare, deleterious variants in genes associated with either SCAD or CTD, while new candidate genes were sought using rare variant collapsing analysis and identification of novel loss-of-function variants in genes intolerant to such variation. Finally, 2 SCAD polygenic risk scores were applied to assess the contribution of common variants. RESULTS: We identified 10 cases with at least one rare, likely disease-causing variant in CTD-associated genes, although only one had a CTD phenotype. No genes were significantly associated with SCAD from genome-wide collapsing analysis, however, enrichment for TGF (transforming growth factor)-ß signaling pathway genes was found with analysis of 24 genes harboring novel loss-of-function variants. Both polygenic risk scores demonstrated that sporadic SCAD cases have a significantly elevated genetic SCAD risk compared with controls. CONCLUSIONS: SCAD shares some genetic overlap with CTD, even in the absence of any major CTD phenotype. Consistent with a complex genetic architecture, SCAD patients also have a higher burden of common variants than controls.


Subject(s)
Acute Coronary Syndrome , Coronary Vessel Anomalies , Vascular Diseases , Coronary Vessel Anomalies/genetics , Female , Humans , Vascular Diseases/congenital , Vascular Diseases/genetics
18.
Front Genet ; 13: 692257, 2022.
Article in English | MEDLINE | ID: mdl-35350246

ABSTRACT

Mitochondrial DNA (mtDNA) mutations contribute to human disease across a range of severity, from rare, highly penetrant mutations causal for monogenic disorders to mutations with milder contributions to phenotypes. mtDNA variation can exist in all copies of mtDNA or in a percentage of mtDNA copies and can be detected with levels as low as 1%. The large number of copies of mtDNA and the possibility of multiple alternative alleles at the same DNA nucleotide position make the task of identifying allelic variation in mtDNA very challenging. In recent years, specialized variant calling algorithms have been developed that are tailored to identify mtDNA variation from whole-genome sequencing (WGS) data. However, very few studies have systematically evaluated and compared these methods for the detection of both homoplasmy and heteroplasmy. A publicly available synthetic gold standard dataset was used to assess four mtDNA variant callers (Mutserve, mitoCaller, MitoSeek, and MToolBox), and the commonly used Genome Analysis Toolkit "best practices" pipeline, which is included in most current WGS pipelines. We also used WGS data from 126 trios and calculated the percentage of maternally inherited variants as a metric of calling accuracy, especially for homoplasmic variants. We additionally compared multiple pathogenicity prediction resources for mtDNA variants. Although the accuracy of homoplasmic variant detection was high for the majority of the callers with high concordance across callers, we found a very low concordance rate between mtDNA variant callers for heteroplasmic variants ranging from 2.8% to 3.6%, for heteroplasmy thresholds of 5% and 1%. Overall, Mutserve showed the best performance using the synthetic benchmark dataset. The analysis of mtDNA pathogenicity resources also showed low concordance in prediction results. We have shown that while homoplasmic variant calling is consistent between callers, there remains a significant discrepancy in heteroplasmic variant calling. We found that resources like population frequency databases and pathogenicity predictors are now available for variant annotation but still need refinement and improvement. With its peculiarities, the mitochondria require special considerations, and we advocate that caution needs to be taken when analyzing mtDNA data from WGS data.

19.
Am Heart J ; 244: 1-13, 2022 02.
Article in English | MEDLINE | ID: mdl-34670123

ABSTRACT

BACKGROUND: The most common cyanotic congenital heart disease (CHD) requiring management as a neonate is transposition of great arteries (TGA). Clinically, up to 50% of TGA patients develop some form of neurodevelopmental disability (NDD), thought to have a significant genetic component. A "ciliopathy" and links with laterality disorders have been proposed. This first report of whole genome sequencing in TGA, sought to identify clinically relevant variants contributing to heart, brain and laterality defects. METHODS: Initial whole genome sequencing analyses on 100 TGA patients focussed on established disease genes related to CHD (n = 107), NDD (n = 659) and heterotaxy (n = 74). Single variant as well as copy number variant analyses were conducted. Variant pathogenicity was assessed using the American College of Medical Genetics and Genomics-Association for Molecular Pathology guidelines. RESULTS: Fifty-five putatively damaging variants were identified in established disease genes associated with CHD, NDD and heterotaxy; however, no clinically relevant variants could be attributed to disease. Notably, case-control analyses identified significantly more predicted-damaging, silent and total variants in TGA cases than healthy controls in established CHD genes (P < .001), NDD genes (P < .001) as well as across the three gene panels (P < .001). CONCLUSION: We present compelling evidence that the majority of TGA is not caused by monogenic rare variants and is most likely oligogenic and/or polygenic in nature, highlighting the complex genetic architecture and multifactorial influences on this CHD sub-type and its long-term sequelae. Assessment of variant burden in key heart, brain and/or laterality genes may be required to unravel the genetic contributions to TGA and related disabilities.


Subject(s)
Heart Defects, Congenital , Transposition of Great Vessels , Arteries , Brain/diagnostic imaging , Heart Defects, Congenital/genetics , Humans , Infant, Newborn , Transposition of Great Vessels/genetics , Whole Genome Sequencing
20.
Nat Commun ; 12(1): 3447, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34103494

ABSTRACT

Congenital heart disease (CHD) is the most common class of human birth defects, with a prevalence of 0.9% of births. However, two-thirds of cases have an unknown cause, and many of these are thought to be caused by in utero exposure to environmental teratogens. Here we identify a potential teratogen causing CHD in mice: maternal iron deficiency (ID). We show that maternal ID in mice causes severe cardiovascular defects in the offspring. These defects likely arise from increased retinoic acid signalling in ID embryos. The defects can be prevented by iron administration in early pregnancy. It has also been proposed that teratogen exposure may potentiate the effects of genetic predisposition to CHD through gene-environment interaction. Here we show that maternal ID increases the severity of heart and craniofacial defects in a mouse model of Down syndrome. It will be important to understand if the effects of maternal ID seen here in mice may have clinical implications for women.


Subject(s)
Cardiovascular System/embryology , Embryo, Mammalian/pathology , Iron Deficiencies , Animals , Aorta, Thoracic/abnormalities , Biomarkers/metabolism , Cell Differentiation , Coronary Vessels/embryology , Coronary Vessels/pathology , Dietary Supplements , Edema/pathology , Embryo, Mammalian/abnormalities , Embryonic Development , Female , Gene Expression Profiling , Gene-Environment Interaction , Green Fluorescent Proteins/metabolism , Iron/metabolism , Lymphatic Vessels/embryology , Lymphatic Vessels/pathology , Mice, Inbred C57BL , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Penetrance , Phenotype , Pregnancy , Signal Transduction , Stem Cells/pathology , Transgenes , Tretinoin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...