Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(19)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36232883

ABSTRACT

Pain is a worldwide public health problem and its treatment is still a challenge since clinically available drugs do not completely reverse chronic painful states or induce undesirable effects. Crotalphine is a 14 amino acids synthetic peptide that induces a potent and long-lasting analgesic effect on acute and chronic pain models, peripherally mediated by the endogenous release of dynorphin A and the desensitization of the transient receptor potential ankyrin 1 (TRPA1) receptor. However, the effects of crotalphine on the central nervous system (CNS) and the signaling pathway have not been investigated. Thus, the central effect of crotalphine was evaluated on the partial sciatic nerve ligation (PSNL)-induced chronic neuropathic pain model. Crotalphine (100 µg/kg, p.o.)-induced analgesia on the 14th day after surgery lasting up to 24 h after administration. This effect was prevented by intrathecal administration of CB1 (AM251) or CB2 (AM630) cannabinoid receptor antagonists. Besides that, crotalphine-induced analgesia was reversed by CTOP, nor-BNI, and naltrindole, antagonists of mu, kappa, and delta-opioid receptors, respectively, and also by the specific antibodies for ß-endorphin, dynorphin-A, and met-enkephalin. Likewise, the analgesic effect of crotalphine was blocked by the intrathecal administration of minocycline, an inhibitor of microglial activation and proliferation. Additionally, crotalphine decreased the PSNL-induced IL-6 release in the spinal cord. Importantly, in vitro, crotalphine inhibited LPS-induced CD86 expression and upregulated CD206 expression in BV-2 cells, demonstrating a polarization of microglial cells towards the M2 phenotype. These results demonstrated that crotalphine, besides activating opioid and cannabinoid analgesic systems, impairs central neuroinflammation, confirming the neuromodulatory mechanism involved in the crotalphine analgesic effect.


Subject(s)
Analgesia , Cannabinoids , Neuralgia , Amino Acids/metabolism , Analgesics/metabolism , Analgesics/pharmacology , Analgesics/therapeutic use , Analgesics, Opioid/metabolism , Ankyrins/metabolism , Cannabinoid Receptor Antagonists/therapeutic use , Cannabinoids/therapeutic use , Dynorphins/metabolism , Enkephalin, Methionine/metabolism , Humans , Interleukin-6/metabolism , Lipopolysaccharides/metabolism , Microglia/metabolism , Minocycline/therapeutic use , Neuralgia/metabolism , Peptides , Phenotype , Receptors, Opioid/metabolism , Spinal Cord , beta-Endorphin/metabolism
2.
Toxins (Basel) ; 13(11)2021 11 22.
Article in English | MEDLINE | ID: mdl-34822611

ABSTRACT

Multiple sclerosis (MS) is a demyelinating disease of inflammatory and autoimmune origin, which induces sensory and progressive motor impairments, including pain. Cells of the immune system actively participate in the pathogenesis and progression of MS by inducing neuroinflammation, tissue damage, and demyelination. Crotalphine (CRO), a structural analogue to a peptide firstly identified in Crotalus durissus terrificus snake venom, induces analgesia by endogenous opioid release and type 2 cannabinoid receptor (CB2) activation. Since CB2 activation downregulates neuroinflammation and ameliorates symptoms in mice models of MS, it was presently investigated whether CRO has a beneficial effect in the experimental autoimmune encephalomyelitis (EAE). CRO was administered on the 5th day after immunization, in a single dose, or five doses starting at the peak of disease. CRO partially reverted EAE-induced mechanical hyperalgesia and decreased the severity of the clinical signs. In addition, CRO decreases the inflammatory infiltrate and glial cells activation followed by TNF-α and IL-17 downregulation in the spinal cord. Peripherally, CRO recovers the EAE-induced impairment in myelin thickness in the sciatic nerve. Therefore, CRO interferes with central and peripheral neuroinflammation, opening perspectives to MS control.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/drug therapy , Neuroinflammatory Diseases/drug therapy , Pain/drug therapy , Peptides/pharmacology , Analgesics/pharmacology , Animals , Encephalomyelitis, Autoimmune, Experimental/physiopathology , Female , Hyperalgesia/drug therapy , Mice , Mice, Inbred C57BL , Multiple Sclerosis/drug therapy , Multiple Sclerosis/physiopathology , Receptor, Cannabinoid, CB2/drug effects , Receptor, Cannabinoid, CB2/metabolism
3.
Front Immunol ; 11: 591563, 2020.
Article in English | MEDLINE | ID: mdl-33193433

ABSTRACT

Crotoxin (CTX), the main neurotoxin from Crotalus durissus terrificus snake venom, has anti-inflammatory, immunomodulatory and antinociceptive activities. However, the CTX-induced toxicity may compromise its use. Under this scenario, the use of nanoparticle such as nanostructured mesoporous silica (SBA-15) as a carrier might become a feasible approach to improve CTX safety. Here, we determined the benefits of SBA-15 on CTX-related neuroinflammatory and immunomodulatory properties during experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis that replicates several histopathological and immunological features observed in humans. We showed that a single administration of CTX:SBA-15 (54 µg/kg) was more effective in reducing pain and ameliorated the clinical score (motor impairment) in EAE animals compared to the CTX-treated EAE group; therefore, improving the disease outcome. Of interest, CTX:SBA-15, but not unconjugated CTX, prevented EAE-induced atrophy and loss of muscle function. Further supporting an immune mechanism, CTX:SBA-15 treatment reduced both recruitment and proliferation of peripheral Th17 cells as well as diminished IL-17 expression and glial cells activation in the spinal cord in EAE animals when compared with CTX-treated EAE group. Finally, CTX:SBA-15, but not unconjugated CTX, prevented the EAE-induced cell infiltration in the CNS. These results provide evidence that SBA-15 maximizes the immunomodulatory and anti-inflammatory effects of CTX in an EAE model; therefore, suggesting that SBA-15 has the potential to improve CTX effectiveness in the treatment of MS.


Subject(s)
Crotoxin/administration & dosage , Encephalomyelitis, Autoimmune, Experimental/etiology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Immunomodulation/drug effects , Silicon Dioxide , Theranostic Nanomedicine , Animals , Biomarkers , Biopsy , Crotoxin/adverse effects , Crotoxin/chemistry , Cytokines/metabolism , Disease Management , Disease Models, Animal , Disease Susceptibility , Encephalomyelitis, Autoimmune, Experimental/diagnosis , Female , Mice , Muscle, Skeletal/immunology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Severity of Illness Index , Spinal Cord/immunology , Spinal Cord/metabolism , Spinal Cord/pathology , Symptom Assessment
4.
Mol Pain ; 8: 57, 2012 Jul 29.
Article in English | MEDLINE | ID: mdl-22839415

ABSTRACT

BACKGROUND: The neural mobilization technique is a noninvasive method that has proved clinically effective in reducing pain sensitivity and consequently in improving quality of life after neuropathic pain. The present study examined the effects of neural mobilization (NM) on pain sensitivity induced by chronic constriction injury (CCI) in rats. The CCI was performed on adult male rats, submitted thereafter to 10 sessions of NM, each other day, starting 14 days after the CCI injury. Over the treatment period, animals were evaluated for nociception using behavioral tests, such as tests for allodynia and thermal and mechanical hyperalgesia. At the end of the sessions, the dorsal root ganglion (DRG) and spinal cord were analyzed using immunohistochemistry and Western blot assays for neural growth factor (NGF) and glial fibrillary acidic protein (GFAP). RESULTS: The NM treatment induced an early reduction (from the second session) of the hyperalgesia and allodynia in CCI-injured rats, which persisted until the end of the treatment. On the other hand, only after the 4th session we observed a blockade of thermal sensitivity. Regarding cellular changes, we observed a decrease of GFAP and NGF expression after NM in the ipsilateral DRG (68% and 111%, respectively) and the decrease of only GFAP expression after NM in the lumbar spinal cord (L3-L6) (108%). CONCLUSIONS: These data provide evidence that NM treatment reverses pain symptoms in CCI-injured rats and suggest the involvement of glial cells and NGF in such an effect.


Subject(s)
Behavior, Animal , Neuralgia/pathology , Neuralgia/therapy , Rehabilitation/methods , Animals , Constriction, Pathologic , Densitometry , Fluorescent Antibody Technique , Ganglia, Spinal/metabolism , Ganglia, Spinal/pathology , Ganglia, Spinal/physiopathology , Glial Fibrillary Acidic Protein/metabolism , Hyperalgesia/complications , Hyperalgesia/pathology , Hyperalgesia/physiopathology , Male , Nerve Growth Factor/metabolism , Neuralgia/physiopathology , Pain Threshold , Rats , Rats, Wistar , Spinal Cord/metabolism , Spinal Cord/pathology , Spinal Cord/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...