Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 5845, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992039

ABSTRACT

Spontaneous symmetry breaking and emergent polar order are each of fundamental importance to a range of scientific disciplines, as well as generating rich phase behaviour in liquid crystals (LCs). Here, we show the union of these phenomena to lead to two previously undiscovered polar liquid states of matter. Both phases have a lamellar structure with an inherent polar ordering of their constituent molecules. The first of these phases is characterised by polar order and a local tilted structure; the tilt direction processes about a helix orthogonal to the layer normal, the period of which is such that we observe selective reflection of light. The second new phase type is anti-ferroelectric, with the constituent molecules aligning orthogonally to the layer normal. This has led us to term the phases the Sm C P H and SmAAF phases, respectively. Further to this, we obtain room temperature ferroelectric nematic (NF) and Sm C P H phases via binary mixture formulation of the novel materials described here with a standard NF compound (DIO), with the resultant materials having melting points (and/or glass transitions) which are significantly below ambient temperature. The new soft matter phase types discovered herein can be considered as electrical analogues of topological structures of magnetic spins in hard matter.

2.
Chemphyschem ; 25(11): e202300848, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38233352

ABSTRACT

The syntheses and characterisation of the 4-[{[4-({n-[4-(4-cyanophenyl)phenyl]-n-yl}oxy)phenyl]-methylidene}amino]phenyl-4-alkoxybenzoates (CBnOIBeOm) are reported with n=8 and 10 and m=1-10. The two series display fascinating liquid crystal polymorphism. All twenty reported homologues display an enantiotropic nematic (N) phase at high temperature. When the length of the spacer (n) is greater than that of the terminal chain (m), the twist-bend nematic (NTB) phase is observed at temperatures below the N phase. As the length of the terminal chain is increased and extends beyond the length of the spacer up to three smectic phases are observed on cooling the N phase. One of these smectic phases has been assigned as the rare twist-bend smectic C subphase, the SmCTB-α phase. In all the smectic phases, a monolayer packing arrangement is seen, and this is attributed to the anti-parallel associations of the like mesogenic units.

SELECTION OF CITATIONS
SEARCH DETAIL
...